Skip to main content

Advertisement

Log in

Tenofovir disoproxil fumarate mediates neuronal injury by inducing neurotoxicity

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Purpose

Highly active antiretroviral therapy (HAART) is an accepted treatment option for patients with virus infection. Mounting evidence indicated that persistent HAART treatment is implicated with increased morbidity of HIV-associated neurocognitive disorders (HAND) in patients. Tenofovir disoproxil fumarate (TDF), a novel nucleotide reverse transcriptase inhibitor (NRTI), was used in patients with HIV co-infected with HBV. And it is still a vital first-line antiretroviral compounds in HAART. However, whether persistent treatment with TDF is involved in HAND development remains to be further elucidated. In this study, we aimed to discuss the neurotoxicity of TDF.

Methods

We used SH-SY5Y cells and primary neuronal cells to evaluate the neurotoxicity of TDF in vitro. The cytotoxicity of TDF on SH-SY5Y cells and primary neuronal cells was evaluated by the cell viability and LDH levels by MTT assay and LDH kit, respectively. Hoechst 33342 staining, TUNEL assay and flow cytometry were performed to evaluate the cells apoptosis. The intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) production were measured by commercial kits. In addition, the activation level of caspase-3 was evaluated using spectrophotometry and western blotting.

Results

Our results showed that TDF treatment significantly induced cell viability and induced apoptosis of SH-SY5Y cells and primary neuronal cells. Furthermore, the ROS levels and MDA productions were significantly up-regulated in nerve cells treated with TDF. 

Conclusion

Our findings indicated that TDF may induce neuronal cell apoptosis through increasing the intracellular ROS and the expression level of caspase-3, which may be related to the increasing prevalence of HAND.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data can be provided by the corresponding author upon request.

Code availability

Not applicable.

References

  1. Buckley S, Byrnes S, Cochrane C, Roche M, Estes JD et al (2021) The role of oxidative stress in HIV-associated neurocognitive disorders. Brain Behav Immun Health 13:100235. https://doi.org/10.1016/j.bbih.2021.100235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Martinec O, Huliciak M, Staud F, Cecka F, Vokral I et al (2019) Anti-HIV and Anti-Hepatitis C virus drugs inhibit P-Glycoprotein efflux activity in Caco-2 cells and recision-cut Rat and human intestinal slices. Antimicrob Agents Chemother 63 (11). https://doi.org/10.1128/AAC.00910-19

  3. Cressey TR, Siriprakaisil O, Klinbuayaem V, Quame-Amaglo J, Kubiak RW et al (2017) A randomized clinical pharmacokinetic trial of Tenofovir in blood, plasma and urine in adults with perfect, moderate and low PrEP adherence: the TARGET study. BMC Infect Dis 17(1):496. https://doi.org/10.1186/s12879-017-2593-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tun-Yhong W, Chinpaisal C, Pamonsinlapatham P, Kaewkitichai S (2017) Tenofovir disoproxil fumarate is a new substrate of ATP-binding cassette subfamily C member 11. Antimicrob Agents Chemother 61(4). https://doi.org/10.1128/AAC.01725-16

  5. Kwofie TB, Adigbli D, James OY, Ativi E, Lokpo SY (2021) Hepatitis B and C infections in HIV-1 patients on combination antiretroviral therapy (cART) in Ghana: implications for immunologic recovery, clinical response to treatment, and hepatotoxicity. Heliyon 7:07172. https://doi.org/10.1016/j.heliyon.2021.e07172

    Article  CAS  Google Scholar 

  6. Galvez C, Urrea V, Dalmau J, Jimenez M, Clotet B et al (2020) Extremely low viral reservoir in treated chronically HIV-1-infected individuals. EBioMedicine 57:102830. https://doi.org/10.1016/j.ebiom.2020.102830

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chompre G, Martinez-Orengo N, Cruz M, Porter JT, Noel RJ Jr (2019) TGFbetaRI antagonist inhibits HIV-1 Nef-induced CC chemokine family ligand 2 (CCL2) in the brain and prevents spatial learning impairment. J Neuroinflammation 16(1):262. https://doi.org/10.1186/s12974-019-1664-4

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ferrell D, Giunta B (2014) The impact of HIV-1 on neurogenesis: implications for HAND. Cell Mol Life Sci 71(22):4387–4392. https://doi.org/10.1007/s00018-014-1702-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tierney S, Woods SP, Verduzco M, Beltran J, Massman PJ et al (2018) Semantic memory in HIV-associated neurocognitive disorders: an evaluation of the “Cortical” versus “Subcortical” hypothesis. Arch Clin Neuropsychol 33(4):406–416. https://doi.org/10.1093/arclin/acx083

    Article  PubMed  Google Scholar 

  10. Sreeram S, Ye F, Garcia-Mesa Y, Nguyen K, El Sayed A et al (2022) The potential role of HIV-1 latency in promoting neuroinflammation and HIV-1-associated neurocognitive disorder. Trends Immunol 43(8):630–639. https://doi.org/10.1016/j.it.2022.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yuan NY, Kaul M (2021) Beneficial and adverse effects of cART affect neurocognitive function in HIV-1 infection: balancing viral suppression against neuronal stress and injury. J Neuroimmune Pharmacol 16(1):90–112. https://doi.org/10.1007/s11481-019-09868-9

    Article  PubMed  Google Scholar 

  12. Lanman T, Letendre S, Ma Q, Bang A, Ellis R (2021) CNS neurotoxicity of antiretrovirals. J Neuroimmune Pharmacol 16(1):130–143. https://doi.org/10.1007/s11481-019-09886-7

    Article  PubMed  Google Scholar 

  13. Martin JL, Brown CE, Matthews-Davis N, Reardon JE (1994) Effects of antiviral nucleoside analogs on human DNA polymerases and mitochondrial DNA synthesis. Antimicrob Agents Chemother 38(12):2743–2749. https://doi.org/10.1128/AAC.38.12.2743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Feldman D, Anderson TD (1994) Schwann cell mitochondrial alterations in peripheral nerves of rabbits treated with 2’,3’-dideoxycytidine. Acta Neuropathol 87(1):71–80. https://doi.org/10.1007/BF00386256

    Article  CAS  PubMed  Google Scholar 

  15. Tourret J, Deray G, Isnard-Bagnis C (2013) Tenofovir effect on the kidneys of HIV-infected patients: a double-edged sword? J Am Soc Nephrol 24(10):1519–1527. https://doi.org/10.1681/ASN.2012080857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Salvaggio SE, Giacomelli A, Falvella FS, Oreni ML, Meraviglia P et al (2017) Clinical and genetic factors associated with kidney tubular dysfunction in a real-life single centre cohort of HIV-positive patients. BMC Infect Dis 17(1):396. https://doi.org/10.1186/s12879-017-2497-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Karris MY (2017) Short Communication: Resolution of tenofovir disoproxil fumarate induced Fanconi Syndrome with switch to Tenofovir alafenamide fumarate in a HIV-1 and Hepatitis B coinfected patient. AIDS Res Hum Retroviruses 33(7):718–722. https://doi.org/10.1089/AID.2016.0180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Agbaji OO, Abah IO, Ebonyi AO, Gimba ZM, Abene EE et al (2019) Long term exposure to tenofovir disoproxil Fumarate-containing antiretroviral therapy is associated with renal impairment in an African cohort of HIV-infected adults. J Int Assoc Provid AIDS Care 18:2325958218821963. https://doi.org/10.1177/2325958218821963

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kapadia J, Shah S, Desai C, Desai M, Patel S et al (2013) Tenofovir induced Fanconi syndrome: a possible pharmacokinetic interaction. Indian J Pharmacol 45(2):191–192. https://doi.org/10.4103/0253-7613.108319

    Article  PubMed  PubMed Central  Google Scholar 

  20. Liu H, Gu R, Li W, Zhou W, Cong Z et al (2019) Lactobacillus rhamnosus GG attenuates tenofovir disoproxil fumarate-induced bone loss in male mice via gut-microbiota-dependent anti-inflammation. Ther Adv Chronic Dis 10:2040622319860653. https://doi.org/10.1177/2040622319860653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim-Chang JJ, Wilson L, Chan C, Fischer B, Venturi G et al (2019) Tenofovir has minimal effect on biomarkers of bone health in youth with HIV receiving initial antiretroviral Therapy. AIDS Res Hum Retroviruses 35(8):746–754. https://doi.org/10.1089/AID.2018.0270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu P, Wang Y, Qin Z, Qiu L, Zhang M et al (2017) Combined medication of antiretroviral drugs tenofovir disoproxil fumarate, emtricitabine, and raltegravir reduces neural progenitor cell proliferation in vivo and in vitro. J Neuroimmune Pharmacol 12(4):682–692. https://doi.org/10.1007/s11481-017-9755-4

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang C, Ma Z, Yan DY, Liu C, Deng Y et al (2018) Alpha-Synuclein and calpains disrupt SNARE-Mediated synaptic vesicle fusion during manganese exposure in SH-SY5Y cells. Cells 7(12). https://doi.org/10.3390/cells7120258

  24. Bell M, Zempel H (2022) A simple human cell model for TAU trafficking and tauopathy-related TAU pathology. Neural Regen Res 17(4):770–772. https://doi.org/10.4103/1673-5374.322450

    Article  CAS  PubMed  Google Scholar 

  25. Marrazzo P, Angeloni C, Hrelia S (2019) Combined treatment with three natural antioxidants enhances neuroprotection in a SH-SY5Y 3D culture model. Antioxidants (Basel) 8(10). https://doi.org/10.3390/antiox8100420

  26. Gangoso E, Talaveron R, Jaraiz-Rodriguez M, Dominguez-Prieto M, Ezan P et al (2017) A c-Src inhibitor peptide based on connexin 43 exerts neuroprotective effects through the inhibition of Glial Hemichannel activity. Front Mol Neurosci 10:418. https://doi.org/10.3389/fnmol.2017.00418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bao D, Wang J, Pang X, Liu H (2017) Protective effect of quercetin against oxidative stress-induced cytotoxicity in rat pheochromocytoma (PC-12) cells. Molecules 22(7). https://doi.org/10.3390/molecules22071122

  28. Ho E, Karimi Galougahi K, Liu CC, Bhindi R, Figtree GA (2013) Biological markers of oxidative stress: Applications to cardiovascular research and practice. Redox Biol 1(1):483–491. https://doi.org/10.1016/j.redox.2013.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Blair WS, Pickford C, Irving SL, Brown DG, Anderson M et al (2010) HIV capsid is a tractable target for small molecule therapeutic intervention. PLoS Pathog 6(12):e1001220. https://doi.org/10.1371/journal.ppat.1001220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fields JA, Swinton MK, Carson A, Soontornniyomkij B, Lindsay C et al (2019) Tenofovir disoproxil fumarate induces peripheral neuropathy and alters inflammation and mitochondrial biogenesis in the brains of mice. Sci Rep 9(1):17158. https://doi.org/10.1038/s41598-019-53466-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Smith AS, Ankam S, Farhy C, Fiengo L, Basa RCB et al (2022) High-content analysis and Kinetic Image Cytometry identify toxicity and epigenetic effects of HIV antiretrovirals on human iPSC-neurons and primary neural precursor cells. J Pharmacol Toxicol Methods 114:107157. https://doi.org/10.1016/j.vascn.2022.107157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tsai PJ, Chang A, Yamada S, Tsai N, Bartholomew ML (2014) Use of tenofovir disoproxil fumarate in highly viremic, hepatitis B mono-infected pregnant women. Dig Dis Sci 59(11):2797–2803. https://doi.org/10.1007/s10620-014-3230-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bai L, Zhu X, Ma T, Wang J, Wang F et al (2013) The p38 MAPK NF-kappaB pathway, not the ERK pathway, is involved in exogenous HIV-1 Tat-induced apoptotic cell death in retinal pigment epithelial cells. Int J Biochem Cell Biol 45(8):1794–1801. https://doi.org/10.1016/j.biocel.2013.05.022

    Article  CAS  PubMed  Google Scholar 

  34. Bertrand SJ, Aksenova MV, Mactutus CF, Booze RM (2013) HIV-1 Tat protein variants: critical role for the cysteine region in synaptodendritic injury. Exp Neurol 248:228–235. https://doi.org/10.1016/j.expneurol.2013.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fourie C, Kiraly M, Madison DV, Montgomery JM (2014) Paired whole cell recordings in organotypic hippocampal slices. J Vis Exp 91:51958. https://doi.org/10.3791/51958

    Article  CAS  Google Scholar 

  36. El-Amine R, Germini D, Zakharova VV, Tsfasman T, Sheval EV et al (2018) HIV-1 Tatprotein induces DNA damage in human peripheral blood B-lymphocytes via mitochondrial ROS production. Redox Biol 15:97–108. https://doi.org/10.1016/j.redox.2017.11.024

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by two fundings of Key Program of the Higher Education of Henan Province in China (NO. 212102310821 and NO. 222102310426) for Hongliang Liu and Juanmei Zhang, respectively, also provided partial supports for this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Xiaotian Yang, Juanmei Zhang, Dengke Bao and Hongliang Liu. The first draft of the manuscript was written by Xiaotian Yang and Juanmei Zhang, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Hongliang Liu or Dengke Bao.

Ethics declarations

Ethics approval

All experiments in this study were performed in accordance with relevant guidelines and regulations and were approved by Ethics Committee of Henan University.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Zhang, J., Cheng, Y. et al. Tenofovir disoproxil fumarate mediates neuronal injury by inducing neurotoxicity. Eur J Clin Microbiol Infect Dis 42, 1195–1205 (2023). https://doi.org/10.1007/s10096-023-04654-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-023-04654-1

Keywords

Navigation