Skip to main content

Advertisement

Log in

Plasmonic gold chips for the diagnosis of Toxoplasma gondii, CMV, and rubella infections using saliva with serum detection precision

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Sampling the blood compartment by an invasive procedure such as phlebotomy is the most common approach used for diagnostic purposes. However, phlebotomy has several drawbacks including pain, vasovagal reactions, and anxiety. Therefore, alternative approaches should be tested to minimize patient’s discomfort. Saliva is a reasonable compartment; when obtained, it generates little or no anxiety. We setup a multiplexed serology assay for detection of Toxoplasma gondii IgG and IgM, rubella IgG, and CMV IgG, in serum, whole blood, and saliva using novel plasmonic gold (pGOLD) chips. pGOLD test results in serum, whole blood, and saliva were compared with commercial kits test results in serum. One hundred twenty serum/saliva sets (Lyon) and 28 serum/whole blood/saliva sets (Nice) from France were tested. In serum and whole blood, sensitivity and specificity of multiplex T. gondii, CMV, and rubella IgG were 100% in pGOLD when compared to commercial test results in serum. In saliva, sensitivity and specificity for T. gondii and rubella IgG were 100%, and for CMV IgG, sensitivity and specificity were 92.9% and 100%, respectively, when compared to commercial test results in serum. We were also able to detect T. gondii IgM in saliva with sensitivity and specificity of 100% and 95.4%, respectively, when compared to serum test results. Serological testing by multiplex pGOLD assay for T. gondii, rubella, and CMV in saliva is reliable and likely to be more acceptable for systematic screening of pregnant women, newborn, and immunocompromised patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yoshizawa JM, Schafer CA, Schafer JJ, Farrell JJ, Paster BJ, Wong DTW (2013) Salivary biomarkers: toward future clinical and diagnostic utilities. Clin Microbiol Rev 26:781–791. https://doi.org/10.1128/CMR.00021-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Exum NG, Pisanic N, Granger DA, Schwab KJ, Detrick B, Kosek M et al (2016) Use of pathogen-specific antibody biomarkers to estimate waterborne infections in population-based settings. Curr Environ Health Rep 3:322–334. https://doi.org/10.1007/s40572-016-0096-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stekler JD, Ure G, O’Neal JD, Lane A, Swanson F, Maenza J et al (2016) Performance of determine combo and other point-of-care HIV tests among Seattle MSM. J Clin Virol 76:8–13. https://doi.org/10.1016/j.jcv.2015.12.011

    Article  PubMed  PubMed Central  Google Scholar 

  4. Augustine SAJ (2016) Towards universal screening for toxoplasmosis: rapid, cost-effective, and simultaneous detection of anti-Toxoplasma IgG, IgM, and IgA antibodies by use of very small serum volumes. J Clin Microbiol 54:1684–1685. https://doi.org/10.1128/JCM.00913-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li X, Pomares C, Gonfrier G, Koh B, Zhu S, Gong M et al (2016) Multiplexed anti-Toxoplasma IgG, IgM, and IgA assay on plasmonic gold chips: towards making mass screening possible with dye test precision. J Clin Microbiol 54:1726–1733. https://doi.org/10.1128/JCM.03371-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pomares C, Zhang B, Arulkumar S, Gonfrier G, Marty P, Zhao S et al (2017) Validation of IgG, IgM multiplex plasmonic gold platform in French clinical cohorts for the serodiagnosis and follow up of Toxoplasma gondii infection. Diagn Microbiol Infect Dis [cited 2016 28]; http://www.sciencedirect.com/science/article/pii/S0732889316302863. https://doi.org/10.1016/j.diagmicrobio.2016.09.001

  7. Yazigi A, Pecoulas AED, Vauloup-Fellous C, Grangeot-Keros L, Ayoubi J-M, Picone O (2016) Fetal and neonatal abnormalities due to congenital rubella syndrome: a review of literature. J Matern Fetal Neonatal Med 22(0):1–5. https://doi.org/10.3109/14767058.2016.1169526

    Article  Google Scholar 

  8. Hui L, Wood G (2015) Perinatal outcome after maternal primary cytomegalovirus infection in the first trimester: a practical update and counseling aid. Prenat Diagn 35:1–7. https://doi.org/10.1002/pd.4497

    Article  PubMed  Google Scholar 

  9. Picone O, Grangeot-Keros L, Senat M, Fuchs F, Bouthry E, Ayoubi J et al (2016) Cytomegalovirus non-primary infection during pregnancy. Can serology help with diagnosis? J Matern Fetal Neonatal Med 5:1–4. https://doi.org/10.3109/14767058.2016.1169521

    Article  Google Scholar 

  10. Chapey E, Meroni V, Kieffer F, Bollani L, Ecochard R, Garcia P et al (2015) Use of IgG in oral fluid to monitor infants with suspected congenital toxoplasmosis. Clin Vaccine Immunol 22:398–403. https://doi.org/10.1128/CVI.00552-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sabin AB, Feldman HA (1948) Dyes as microchemical indicators of a new immunity phenomenon affecting a protozoon parasite (toxoplasma). Science 108:660–663. https://doi.org/10.1126/science.108.2815.660

    Article  CAS  PubMed  Google Scholar 

  12. Zhang B, Yang J, Zou Y, Gong M, Chen H, Hong G et al (2014) Plasmonic micro-beads for fluorescence enhanced, multiplexed protein detection with flow cytometry. Chem Sci 26(5):4070–4075. https://doi.org/10.1039/C4SC01206B

    Article  Google Scholar 

  13. Tabakman SM, Lau L, Robinson JT, Price J, Sherlock SP, Wang H et al (2011) Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range. Nat Commun 2:466. https://doi.org/10.1038/ncomms1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Koh B, Li X, Zhang B, Yuan B, Lin Y, Antaris AL et al (2016) Visible to near-infrared fluorescence enhanced cellular imaging on plasmonic gold chips. Small 27(12):457–465. https://doi.org/10.1002/smll.201502182

    Article  CAS  Google Scholar 

  15. Zhang B, Price J, Hong G, Tabakman SM, Wang H, Jarrell JA et al (2013) Multiplexed cytokine detection on plasmonic gold substrates with enhanced near-infrared fluorescence. Nano Res 6:113–120. https://doi.org/10.1007/s12274-012-0286-2

    Article  CAS  Google Scholar 

  16. Zhang B, Kumar RB, Dai H, Feldman BJ (2014) A plasmonic chip for biomarker discovery and diagnosis of type 1 diabetes. Nat Med 20:948–953. https://doi.org/10.1038/nm.3619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pomares C, Montoya JG (2016) Laboratory diagnosis of congenital toxoplasmosis. J Clin Microbiol 54:2448–2454. https://doi.org/10.1128/JCM.00487-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cortina-Borja M, Tan HK, Wallon M, Paul M, Prusa A, Buffolano W et al (2010) Prenatal treatment for serious neurological sequelae of congenital toxoplasmosis: an observational prospective cohort study. PLoS Med 7. https://doi.org/10.1371/journal.pmed.1000351

  19. Hotop A, Hlobil H, Gross U (2012) Efficacy of rapid treatment initiation following primary Toxoplasma gondii infection during pregnancy. Clin Infect Dis 54:1545–1552. https://doi.org/10.1093/cid/cis234

    Article  CAS  PubMed  Google Scholar 

  20. Kieffer F, Wallon M, Garcia P, Thulliez P, Peyron F, Franck J (2008) Risk factors for retinochoroiditis during the first 2 years of life in infants with treated congenital toxoplasmosis. Pediatr Infect Dis J 27:27–32. https://doi.org/10.1097/INF.0b013e318134286d

    Article  PubMed  Google Scholar 

  21. Prusa A-R, Kasper DC, Pollak A, Gleiss A, Waldhoer T, Hayde M (2015) The Austrian Toxoplasmosis Register, 1992-2008. Clin Infect Dis 15(60):e4–e10. https://doi.org/10.1093/cid/ciu724

    Article  Google Scholar 

  22. Wallon M, Peyron F, Cornu C, Vinault S, Abrahamowicz M, Kopp CB et al (2013) Congenital Toxoplasma infection: monthly prenatal screening decreases transmission rate and improves clinical outcome at age 3 years. Clin Infect Dis 56:1223–1231. https://doi.org/10.1093/cid/cit032

    Article  CAS  PubMed  Google Scholar 

  23. SYROCOT (Systematic Review on Congenital Toxoplasmosis) study group, Thiébaut R, Leproust S, Chêne G, Gilbert R (2007) Effectiveness of prenatal treatment for congenital toxoplasmosis: a meta-analysis of individual patients’ data. Lancet 369:115–122. https://doi.org/10.1016/S0140-6736(07)60072-5

    Article  Google Scholar 

  24. Carlson A, Norwitz ER, Stiller RJ (2010) Cytomegalovirus infection in pregnancy: should all women be screened? Rev Obstet Gynecol 3:172–179

    PubMed  PubMed Central  Google Scholar 

  25. Rawlinson WD, Hamilton ST, van Zuylen WJ (2016) Update on treatment of cytomegalovirus infection in pregnancy and of the newborn with congenital cytomegalovirus. Curr Opin Infect Dis 29:615–624. https://doi.org/10.1097/QCO.0000000000000317

    Article  PubMed  Google Scholar 

  26. Rawlinson WD, Boppana SB, Fowler KB, Kimberlin DW, Lazzarotto T, Alain S et al (2017) Congenital cytomegalovirus infection in pregnancy and the neonate: consensus recommendations for prevention, diagnosis, and therapy. Lancet Infect Dis 17:e177–e188. https://doi.org/10.1016/S1473-3099(17)30143-3

    Article  Google Scholar 

  27. Bouthry E, Picone O, Hamdi G, Grangeot-Keros L, Ayoubi J-M, Vauloup-Fellous C (2014) Rubella and pregnancy: diagnosis, management and outcomes. Prenat Diagn 34:1246–1253. https://doi.org/10.1002/pd.4467

    Article  PubMed  Google Scholar 

  28. Stillwaggon E, Carrier CS, Sautter M, McLeod R (2011) Maternal serologic screening to prevent congenital toxoplasmosis: a decision-analytic economic model. PLoS Negl Trop Dis 5:e1333. https://doi.org/10.1371/journal.pntd.0001333

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Christelle Pomares received a grant from the “Philippe Foundation Inc.,” the “Association des amis de la Faculté de Médecine de Nice,” and from REDPIT (Recherche Et Developpement En Pathologie Infectieuse Et Tropicale) association. These associations allowed a personal financial support during the post-doctoral period in the USA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christelle Pomares, Jose G. Montoya or Hongjie Dai.

Ethics declarations

This study was approved by the local ethical committees for the prospective collection of samples (Comité de protection des personnes (CPP) Teaching hospitals of Lyon and Nice, France).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Fig. S1

(PPTX 212 kb)

Fig. S2

(PPTX 155 kb)

Fig. S3

(PPTX 228 kb)

Fig. S4

(PPTX 158 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Pomares, C., Peyron, F. et al. Plasmonic gold chips for the diagnosis of Toxoplasma gondii, CMV, and rubella infections using saliva with serum detection precision. Eur J Clin Microbiol Infect Dis 38, 883–890 (2019). https://doi.org/10.1007/s10096-019-03487-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-019-03487-1

Keywords

Navigation