Skip to main content

Advertisement

Log in

The RIG-I-like helicase receptor MDA5 (IFIH1) is involved in the host defense against Candida infections

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The induction of host defense against Candida species is initiated by recognition of the fungi by pattern recognition receptors and activation of downstream pathways that produce inflammatory mediators essential for infection clearance. In this study, we present complementary evidence based on transcriptome analysis, genetics, and immunological studies in knockout mice and humans that the cytosolic RIG-I-like receptor MDA5 (IFIH1) has an important role in the host defense against C. albicans. Firstly, IFIH1 expression in macrophages is specifically induced by invasive C. albicans hyphae, and patients suffering from chronic mucocutaneous candidiasis (CMC) express lower levels of MDA5 than healthy controls. Secondly, there is a strong association between missense variants in the IFIH1 gene (rs1990760 and rs3747517) and susceptibility to systemic Candida infections. Thirdly, cells from Mda5 knockout mice and human peripheral blood mononuclear cells (PBMCs) with different IFIH1 genotypes display an altered cytokine response to C. albicans. These data strongly suggest that MDA5 is involved in immune responses to Candida infection. As a receptor for viral RNA, MDA5 until now has been linked to antiviral host defense, but these novel studies show unexpected effects in antifungal immunity as well. Future studies are warranted to explore the potential of MDA5 as a novel target for immunotherapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gudlaugsson O, Gillespie S, Lee K et al (2003) Attributable mortality of nosocomial candidemia, revisited. Clin Infect Dis 37(9):1172–1177

    Article  PubMed  Google Scholar 

  2. Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB (2004) Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39(3):309–317

    Article  PubMed  Google Scholar 

  3. Miller LG, Hajjeh RA, Edwards JE Jr (2001) Estimating the cost of nosocomial candidemia in the united states. Clin Infect Dis 32(7):1110

    Article  CAS  PubMed  Google Scholar 

  4. Zaoutis TE, Argon J, Chu J, Berlin JA, Walsh TJ, Feudtner C (2005) The epidemiology and attributable outcomes of candidemia in adults and children hospitalized in the United States: a propensity analysis. Clin Infect Dis 41(9):1232–1239

    Article  PubMed  Google Scholar 

  5. Smeekens SP, van de Veerdonk FL, Kullberg BJ, Netea MG (2013) Genetic susceptibility to Candida infections. EMBO Mol Med 5(6):805–813

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Plantinga TS, Johnson MD, Scott WK et al (2012) Toll-like receptor 1 polymorphisms increase susceptibility to candidemia. J Infect Dis 205(6):934–943

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Glocker EO, Hennigs A, Nabavi M et al (2009) A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med 361(18):1727–1735

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. van de Veerdonk FL, Plantinga TS, Hoischen A et al (2011) STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N Engl J Med 365(1):54–61

    Article  PubMed  Google Scholar 

  9. Liu L, Okada S, Kong XF et al (2011) Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med 208(8):1635–1648

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Babula O, Lazdāne G, Kroica J, Linhares IM, Ledger WJ, Witkin SS (2005) Frequency of interleukin-4 (IL-4) -589 gene polymorphism and vaginal concentrations of IL-4, nitric oxide, and mannose-binding lectin in women with recurrent vulvovaginal candidiasis. Clin Infect Dis 40(9):1258–1262

    Article  CAS  PubMed  Google Scholar 

  11. Smeekens SP, Ng A, Kumar V et al (2013) Functional genomics identifies type I interferon pathway as central for host defense against Candida albicans. Nat Commun 4:1342

    Article  PubMed Central  PubMed  Google Scholar 

  12. Zheng X, Wang Y, Wang Y (2004) Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. EMBO J 23(8):1845–1856

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Trynka G, Hunt KA, Bockett NA et al (2011) Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat Genet 43(12):1193–1201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Oosting M, Ter Hofstede H, Sturm P et al (2011) TLR1/TLR2 heterodimers play an important role in the recognition of Borrelia spirochetes. PLoS One 6(10):e25998

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Lehrer RI, Cline MJ (1969) Interaction of Candida albicans with human leukocytes and serum. J Bacteriol 98(3):996–1004

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28(1):27–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57

    Article  CAS  Google Scholar 

  18. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140(6):805–820

    Article  CAS  PubMed  Google Scholar 

  19. International HapMap Consortium, Frazer KA, Ballinger DG et al (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449(7164):851–861

    Article  Google Scholar 

  20. Gabriel SB, Schaffner SF, Nguyen H et al (2002) The structure of haplotype blocks in the human genome. Science 296(5576):2225–2229

    Article  CAS  PubMed  Google Scholar 

  21. Qu HQ, Marchand L, Grabs R, Polychronakos C (2008) The association between the IFIH1 locus and type 1 diabetes. Diabetologia 51(3):473–475

    Article  CAS  PubMed  Google Scholar 

  22. Liu S, Wang H, Jin Y et al (2009) IFIH1 polymorphisms are significantly associated with type 1 diabetes and IFIH1 gene expression in peripheral blood mononuclear cells. Hum Mol Genet 18(2):358–365

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Smyth DJ, Cooper JD, Bailey R et al (2006) A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat Genet 38(6):617–619

    Article  CAS  PubMed  Google Scholar 

  24. Downes K, Pekalski M, Angus KL et al (2010) Reduced expression of IFIH1 is protective for type 1 diabetes. PLoS One 5(9)e12646

    Article  PubMed Central  PubMed  Google Scholar 

  25. van der Lee R, Buljan M, Lang B et al (2014) Classification of intrinsically disordered regions and proteins. Chem Rev 114(13):6589–6631

    Article  PubMed  Google Scholar 

  26. Wu B, Peisley A, Richards C et al (2013) Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell 152(1–2):276–289

    Article  CAS  PubMed  Google Scholar 

  27. Hou F, Sun L, Zheng H, Skaug B, Jiang QX, Chen ZJ (2011) MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146(3):448–461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Chen G, Zhou D, Zhang Z et al (2012) Genetic variants in IFIH1 play opposite roles in the pathogenesis of psoriasis and chronic periodontitis. Int J Immunogenet 39(2):137–143

    Article  PubMed  Google Scholar 

  29. Yang H, Wang Z, Xu K et al (2012) IFIH1 gene polymorphisms in type 1 diabetes: genetic association analysis and genotype–phenotype correlation in Chinese Han population. Autoimmunity 45(3):226–232

    Article  CAS  PubMed  Google Scholar 

  30. Sutherland A, Davies J, Owen CJ et al (2007) Genomic polymorphism at the interferon-induced helicase (IFIH1) locus contributes to Graves’ disease susceptibility. J Clin Endocrinol Metab 92(8):3338–3341

    Article  CAS  PubMed  Google Scholar 

  31. Cen H, Wang W, Leng RX et al (2013) Association of IFIH1 rs1990760 polymorphism with susceptibility to autoimmune diseases: a meta-analysis. Autoimmunity 46(7):455–462

    Article  CAS  PubMed  Google Scholar 

  32. Martínez A, Santiago JL, Cénit MC et al (2008) IFIH1-GCA-KCNH7 locus: influence on multiple sclerosis risk. Eur J Hum Genet 16(7):861–864

    Article  PubMed  Google Scholar 

  33. Nejentsev S, Walker N, Riches D, Egholm M, Todd JA (2009) Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324(5925):387–389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. van der Graaf C, Kullberg BJ, Joosten L et al (2005) Functional consequences of the Asp299Gly Toll-like receptor-4 polymorphism. Cytokine 30(5):264–268

    Article  PubMed  Google Scholar 

  35. van der Graaf CA, Netea MG, Drenth IP, te Morsche RH, van der Meer JW, Kullberg BJ (2003) Candida-specific interferon-gamma deficiency and toll-like receptor polymorphisms in patients with chronic mucocutaneous candidiasis. Neth J Med 61(11):365–369

    PubMed  Google Scholar 

  36. Van der Graaf CA, Netea MG, Morré SA et al (2006) Toll-like receptor 4 Asp299Gly/Thr399Ile polymorphisms are a risk factor for Candida bloodstream infection. Eur Cytokine Netw 17(1):29–34

    PubMed  Google Scholar 

  37. Liu F, Shinomiya H, Kirikae T, Hirata H, Asano Y (2004) Characterization of murine grancalcin specifically expressed in leukocytes and its possible role in host defense against bacterial infection. Biosci Biotechnol Biochem 68(4):894–902

    Article  CAS  PubMed  Google Scholar 

  38. Lollike K, Johnsen AH, Durussel I, Borregaard N, Cox JA (2001) Biochemical characterization of the penta-EF-hand protein grancalcin and identification of L-plastin as a binding partner. J Biol Chem 276(21):17762–17769

    Article  CAS  PubMed  Google Scholar 

  39. Trinklein ND, Aldred SF, Hartman SJ, Schroeder DI, Otillar RP, Myers RM (2004) An abundance of bidirectional promoters in the human genome. Genome Res 14(1):62–66

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Michalak P (2008) Coexpression, coregulation, and cofunctionality of neighboring genes in eukaryotic genomes. Genomics 91(3):243–248

    Article  CAS  PubMed  Google Scholar 

  41. Roes J, Choi BK, Power D, Xu P, Segal AW (2003) Granulocyte function in grancalcin-deficient mice. Mol Cell Biol 23(3):826–830

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Kato H, Takeuchi O, Sato S et al (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441(7089):101–105

    Article  CAS  PubMed  Google Scholar 

  43. Rice GI, del Toro Duany Y, Jenkinson EM et al (2014) Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat Genet 46(5):503–509

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Majer O, Bourgeois C, Zwolanek F et al (2012) Type I interferons promote fatal immunopathology by regulating inflammatory monocytes and neutrophils during Candida infections. PLoS Pathog 8(7):e1002811

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Netea MG, Gow NA, Munro CA et al (2006) Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J Clin Invest 116(6):1642–1650

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Djeu JY (1990) Role of tumor necrosis factor and colony-stimulating factors in phagocyte function against Candida albicans. Diagn Microbiol Infect Dis 13(5):383–386

    Article  CAS  PubMed  Google Scholar 

  47. Ferwerda G, Girardin SE, Kullberg BJ et al (2005) NOD2 and toll-like receptors are nonredundant recognition systems of Mycobacterium tuberculosis. PLoS Pathog 1(3):279–285

    Article  CAS  PubMed  Google Scholar 

  48. Rahman A, Sobia P, Gupta N, Kaer LV, Das G (2014) Mycobacterium tuberculosis subverts the TLR-2-MyD88 pathway to facilitate its translocation into the cytosol. PLoS One 9(1):e86886

    Article  PubMed Central  PubMed  Google Scholar 

  49. Stamm LM, Morisaki JH, Gao LY et al (2003) Mycobacterium marinum escapes from phagosomes and is propelled by actin-based motility. J Exp Med 198(9):1361–1368

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Wagener J, Malireddi RK, Lenardon MD et al (2014) Fungal chitin dampens inflammation through IL-10 induction mediated by NOD2 and TLR9 activation. PLoS Pathog 10(4):e1004050

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Martin Oti for the helpful discussions. MJ and MGN were supported by an ERC Consolidator Grant (nr. 310372 to MGN). RvdL and MAH were supported by the Virgo Consortium, funded by the Dutch government (FES0908), and by the Netherlands Genomics Initiative (050-060-452). CW was supported by the ERC Advanced Grant, ERC-671274. XW was supported by NSFC 11101321 and NSFC 61263039 grants.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Netea.

Additional information

M. Jaeger, R. van der Lee, and S.-C. Cheng contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 7.91 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaeger, M., van der Lee, R., Cheng, SC. et al. The RIG-I-like helicase receptor MDA5 (IFIH1) is involved in the host defense against Candida infections. Eur J Clin Microbiol Infect Dis 34, 963–974 (2015). https://doi.org/10.1007/s10096-014-2309-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-014-2309-2

Keywords

Navigation