Skip to main content
Log in

Risk factors for treatment failure in orthopedic device-related methicillin-resistant Staphylococcus aureus infection

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The purpose of this study was to determine the clinical and microbiological risk factors for treatment failure of methicillin-resistant Staphylococcus aureus (MRSA) orthopedic device-related infection (ODRI). A retrospective cohort study of patients with MRSA ODRI who were treated at Geneva University Hospitals between 2000 and 2008 was undertaken. Stored MRSA isolates were retrieved for genetic characterization and determination of the vancomycin minimum inhibitory concentration (MIC). Fifty-two patients were included, of whom 23 (44%) had joint arthroplasty and 29 (56%) had osteosynthesis. All 41 of the retrieved MRSA isolates were susceptible to vancomycin (MIC ≤ 2 mg/L) and 35 (85%) shared genetic characteristics of the South German clone (ST228). During a median follow-up of 391 days (range, 4–2,922 days), 18 patients (35%) experienced treatment failure involving MRSA persistence or recurrence. Microbiological factors such as infection with the predominant clone and a vancomycin MIC of 2 mg/L were not associated with treatment failure. Using a Cox proportional hazards model, implant retention (hazard ratio [HR], 4.9; 95% confidence interval [CI], 1.3–18.2; P = 0.017) and single-agent antimicrobial therapy (HR, 4.4; 95% CI, 1.2–16.3; P = 0.025) were independent predictors of treatment failure after debridement. Therapy using a combination of antimicrobials should be considered for patients with MRSA ODRI, especially when implant removal is not feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Lew DP, Waldvogel FA (2004) Osteomyelitis. Lancet 364:369–379

    Article  CAS  PubMed  Google Scholar 

  2. Widmer AF (2001) New developments in diagnosis and treatment of infection in orthopedic implants. Clin Infect Dis 33(Suppl 2):S94–S106

    Article  PubMed  Google Scholar 

  3. Zimmerli W, Trampuz A, Ochsner PE (2004) Prosthetic-joint infections. N Engl J Med 351:1645–1654

    Article  CAS  PubMed  Google Scholar 

  4. Gristina AG (1987) Biomaterial-centered infection: microbial adhesion versus tissue integration. Science 237:1588–1595

    Article  CAS  PubMed  Google Scholar 

  5. Kilgus DJ, Howe DJ, Strang A (2002) Results of periprosthetic hip and knee infections caused by resistant bacteria. Clin Orthop Relat Res 404:116–124

    Article  PubMed  Google Scholar 

  6. Proctor RA, von Eiff C, Kahl BC et al (2006) Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol 4:295–305

    Article  CAS  PubMed  Google Scholar 

  7. Tsukayama DT, Wicklund B, Gustilo RB (1991) Suppressive antibiotic therapy in chronic prosthetic joint infections. Orthopedics 14:841–844

    CAS  PubMed  Google Scholar 

  8. Wilson MG, Kelley K, Thornhill TS (1990) Infection as a complication of total knee-replacement arthroplasty. Risk factors and treatment in sixty-seven cases. J Bone Joint Surg Am 72:878–883

    CAS  PubMed  Google Scholar 

  9. Berbari EF, Hanssen AD, Duffy MC et al (1998) Risk factors for prosthetic joint infection: case–control study. Clin Infect Dis 27:1247–1254

    Article  CAS  PubMed  Google Scholar 

  10. Betsch BY, Eggli S, Siebenrock KA et al (2008) Treatment of joint prosthesis infection in accordance with current recommendations improves outcome. Clin Infect Dis 46:1221–1226

    Article  PubMed  Google Scholar 

  11. Lentino JR (2003) Prosthetic joint infections: bane of orthopedists, challenge for infectious disease specialists. Clin Infect Dis 36:1157–1161

    Article  PubMed  Google Scholar 

  12. Salgado CD, Dash S, Cantey JR et al (2007) Higher risk of failure of methicillin-resistant Staphylococcus aureus prosthetic joint infections. Clin Orthop Relat Res 461:48–53

    PubMed  Google Scholar 

  13. Soriano A, Marco F, Martínez JA et al (2008) Influence of vancomycin minimum inhibitory concentration on the treatment of methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis 46:193–200

    Article  CAS  PubMed  Google Scholar 

  14. Ferry T, Bes M, Dauwalder O et al (2006) Toxin gene content of the Lyon methicillin-resistant Staphylococcus aureus clone compared with that of other pandemic clones. J Clin Microbiol 44:2642–2644

    Article  CAS  PubMed  Google Scholar 

  15. Oliveira DC, Tomasz A, de Lencastre H (2002) Secrets of success of a human pathogen: molecular evolution of pandemic clones of meticillin-resistant Staphylococcus aureus. Lancet Infect Dis 2:180–189

    Article  CAS  PubMed  Google Scholar 

  16. Amaral MM, Coelho LR, Flores RP et al (2005) The predominant variant of the Brazilian epidemic clonal complex of methicillin-resistant Staphylococcus aureus has an enhanced ability to produce biofilm and to adhere to and invade airway epithelial cells. J Infect Dis 192:801–810

    Article  CAS  PubMed  Google Scholar 

  17. Charlson ME, Pompei P, Ales KL et al (1987) A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 40:373–383

    Article  CAS  PubMed  Google Scholar 

  18. Zimmerli W, Ochsner PE (2003) Management of infection associated with prosthetic joints. Infection 31:99–108

    Article  CAS  PubMed  Google Scholar 

  19. Clinical and Laboratory Standards Institute (CLSI) (2007) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard M7-S17, Wayne, PA

  20. Francois P, Huyghe A, Charbonnier Y et al (2005) Use of an automated multiple-locus, variable-number tandem repeat-based method for rapid and high-throughput genotyping of Staphylococcus aureus isolates. J Clin Microbiol 43:3346–3355

    Article  CAS  PubMed  Google Scholar 

  21. Dauwalder O, Lina G, Durand G et al (2008) Epidemiology of invasive methicillin-resistant Staphylococcus aureus clones collected in France in 2006 and 2007. J Clin Microbiol 46:3454–3458

    Article  PubMed  Google Scholar 

  22. Jarraud S, Mougel C, Thioulouse J et al (2002) Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infect Immun 70:631–641

    Article  CAS  PubMed  Google Scholar 

  23. Kondo Y, Ito T, Ma XX et al (2007) Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob Agents Chemother 51:264–274

    Article  CAS  PubMed  Google Scholar 

  24. François P, Harbarth S, Huyghe A et al (2008) Methicillin-resistant Staphylococcus aureus, Geneva, Switzerland, 1993–2005. Emerg Infect Dis 14:304–307

    Article  PubMed  Google Scholar 

  25. Sax H, Posfay-Barbe K, Harbarth S et al (2006) Control of a cluster of community-associated, methicillin-resistant Staphylococcus aureus in neonatology. J Hosp Infect 63:93–100

    Article  CAS  PubMed  Google Scholar 

  26. Concato J, Feinstein AR, Holford TR (1993) The risk of determining risk with multivariable models. Ann Intern Med 118:201–210

    CAS  PubMed  Google Scholar 

  27. Moise PA, Sakoulas G, Forrest A et al (2007) Vancomycin in vitro bactericidal activity and its relationship to efficacy in clearance of methicillin-resistant Staphylococcus aureus bacteremia. Antimicrob Agents Chemother 51:2582–2586

    Article  CAS  PubMed  Google Scholar 

  28. Knudsen JD, Fuursted K, Raber S et al (2000) Pharmacodynamics of glycopeptides in the mouse peritonitis model of Streptococcus pneumoniae or Staphylococcus aureus infection. Antimicrob Agents Chemother 44:1247–1254

    Article  CAS  PubMed  Google Scholar 

  29. Peetermans WE, Hoogeterp JJ, Hazekamp-van Dokkum AM et al (1990) Antistaphylococcal activities of teicoplanin and vancomycin in vitro and in an experimental infection. Antimicrob Agents Chemother 34:1869–1874

    CAS  PubMed  Google Scholar 

  30. Brandt CM, Sistrunk WW, Duffy MC et al (1997) Staphylococcus aureus prosthetic joint infection treated with debridement and prosthesis retention. Clin Infect Dis 24:914–919

    CAS  PubMed  Google Scholar 

  31. Marculescu CE, Berbari EF, Hanssen AD et al (2006) Outcome of prosthetic joint infections treated with debridement and retention of components. Clin Infect Dis 42:471–478

    Article  CAS  PubMed  Google Scholar 

  32. Zimmerli W, Widmer AF, Blatter M et al (1998) Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: a randomized controlled trial. Foreign-Body Infection (FBI) Study Group. JAMA 279:1537–1541

    Article  CAS  PubMed  Google Scholar 

  33. Widmer AF, Frei R, Rajacic Z et al (1990) Correlation between in vivo and in vitro efficacy of antimicrobial agents against foreign body infections. J Infect Dis 162:96–102

    CAS  PubMed  Google Scholar 

  34. Drancourt M, Stein A, Argenson JN et al (1997) Oral treatment of Staphylococcus spp. infected orthopaedic implants with fusidic acid or ofloxacin in combination with rifampicin. J Antimicrob Chemother 39:235–240

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Fondation pour la Recherche Médicale, Paris, France. We are indebted to Elzbieta Huggler, Myriam Girard, Hélène Meugnier, Michele Bes, Colette Nicollier, Christine Courtier, Christine Cardon, Céline Spinelli, and Caroline Bouveron for the isolate characterization. We thank Nathalie Vallier for assistance with the statistical analysis, Abel Ferry for technical assistance, and David Young for editorial guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Ferry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferry, T., Uçkay, I., Vaudaux, P. et al. Risk factors for treatment failure in orthopedic device-related methicillin-resistant Staphylococcus aureus infection. Eur J Clin Microbiol Infect Dis 29, 171–180 (2010). https://doi.org/10.1007/s10096-009-0837-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-009-0837-y

Keywords