Skip to main content

Advertisement

Log in

Simultaneous species identification and detection of rifampicin resistance in staphylococci by sequencing of the rpoB gene

  • Concise Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

In recent years, coagulase-negative staphylococci (CoNS) have been increasingly recognised as causative agents of various infections, especially in immunocompromised patients and related to implanted foreign body materials. In this study, rpoB sequencing was used for simultaneous species identification and detection of rifampicin resistance in clinical staphylococci isolates. Forty-nine (96%) out of 51 isolates, representing 17 different Staphylococcus species according to the initial phenotypic species identification, were identified to the species level using rpoB sequencing. Furthermore, the two remaining isolates were Kocuria sp. and Corynebacterium sp. respectively, according to 16S rRNA sequencing. Comparison with the phenotypic diagnostics also revealed that 8 (16%) of the 49 isolates differed regarding identified species. Discrepant analysis confirmed the result of the rpoB sequencing for all except 2 of these isolates, which could not be distinguished as single species using 16S rRNA sequencing. Regarding detection of rifampicin resistance, isolates obtained pre- and post-treatment with rifampicin were examined. These isolates comprised S. aureus (7 patients) and S. lugdunensis (1 patient). Rifampicin resistance was mainly detected following short-term treatment with rifampicin in combination with isoxazolyl-penicillin, or long-term treatment with rifampicin and ciprofloxacin. Each rifampicin-resistant isolate displayed an identical rpoB sequence as their corresponding rifampicin-susceptible isolates except for one (n = 6) or two (n = 1) nonsynonymous single nucleotide polymorphisms, or insertion of one codon (n = 1). In conclusion, rpoB sequencing is a rapid, objective and accurate method of species identification and simultaneous detection of rifampicin resistance in staphylococci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mellmann A, Becker K, von Eiff C, Keckevoet U, Schumann P, Harmsen D (2006) Sequencing and staphylococci identification. Emerg Infect Dis 12:333–336

    PubMed  CAS  Google Scholar 

  2. Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339:520–532

    Article  PubMed  CAS  Google Scholar 

  3. Huebner J, Goldmann DA (1999) Coagulase-negative staphylococci: role as pathogens. Annu Rev Med 50:223–236

    Article  PubMed  CAS  Google Scholar 

  4. Von Eiff C, Peters G, Heilmann C (2002) Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect Dis 2:677–685

    Article  Google Scholar 

  5. Cerca N, Martins S, Cerca F, Jefferson KK, Pier GB, Oliveira R et al (2005) Comparative assessment of antibiotic susceptibility of coagulase-negative staphylococci in biofilm versus planktonic culture as assessed by bacterial enumeration or rapid XTT colorimetry. J Antimicrob Chemother 56:331–336

    Article  PubMed  CAS  Google Scholar 

  6. Drinkovic D, Morris AJ, Pottumarthy S, MacCulloch D, West T (2003) Bacteriological outcome of combination versus single-agent treatment for staphylococcal endocarditis. J Antimicrob Chemother 52:820–825

    Article  PubMed  CAS  Google Scholar 

  7. Widmer AF, Frei R, Rajacic Z, Zimmerli W (1990) Correlation between in vivo and in vitro efficacy of antimicrobial agents against foreign body infections. J Infect Dis 162:96–102

    PubMed  CAS  Google Scholar 

  8. Zimmerli W (1995) Role of antibiotics in the treatment of infected joint prosthesis. Orthopade 24:308–313

    PubMed  CAS  Google Scholar 

  9. Aubry-Damon H, Soussy CJ, Courvalin P (1998) Characterization of mutations in the rpoB gene that confer rifampin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 42:2590–2594

    PubMed  CAS  Google Scholar 

  10. Wehrli W (1983) Rifampin: mechanisms of action and resistance. Rev Infect Dis 5 [Suppl 3]:S407–S411

    PubMed  CAS  Google Scholar 

  11. Jin DJ, Gross CA (1988) Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. J Mol Biol 202:45–58

    Article  PubMed  CAS  Google Scholar 

  12. Williams DL, Spring L, Collins L, Miller LP, Heifets LB, Gangadharam PR et al (1998) Contribution of rpoB mutations to development of rifamycin cross-resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 42:1853–1857

    PubMed  CAS  Google Scholar 

  13. Yang B, Koga H, Ohno H, Ogawa K, Fukuda M, Hirakata Y et al (1998) Relationship between antimycobacterial activities of rifampicin, rifabutin and KRM-1648 and rpoB mutations of Mycobacterium tuberculosis. J Antimicrob Chemother 42:621–628

    Article  PubMed  CAS  Google Scholar 

  14. Becker K, Harmsen D, Mellmann A, Meier C, Schumann P, Peters G et al (2004) Development and evaluation of a quality-controlled ribosomal sequence database for 16S ribosomal DNA-based identification of Staphylococcus species. J Clin Microbiol 42:4988–4995

    Article  PubMed  CAS  Google Scholar 

  15. Kwok AY, Su SC, Reynolds RP, Bay SJ, Av-Gay Y, Dovichi NJ et al (1999) Species identification and phylogenetic relationships based on partial HSP60 gene sequences within the genus Staphylococcus. Int J Syst Bacteriol 49:1181–1192

    Article  PubMed  CAS  Google Scholar 

  16. Calvo J, Hernandez JL, Farinas MC, Garcia-Palomo D, Aguero J (2000) Osteomyelitis caused by Staphylococcus schleiferi and evidence of misidentification of this Staphylococcus species by an automated bacterial identification system. J Clin Microbiol 38:3887–3889

    PubMed  CAS  Google Scholar 

  17. Drancourt M, Raoult D (2002) rpoB gene sequence-based identification of Staphylococcus species. J Clin Microbiol 40:1333–1338

    Article  PubMed  CAS  Google Scholar 

  18. Poyart C, Quesne G, Boumaila C, Trieu-Cuot P (2001) Rapid and accurate species-level identification of coagulase-negative staphylococci by using the sodA gene as a target. J Clin Microbiol 39:4296–4301

    Article  PubMed  CAS  Google Scholar 

  19. Drancourt M, Bollet C, Carlioz A, Martelin R, Gayral JP, Raoult D (2000) 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. J Clin Microbiol 38:3623–3630

    PubMed  CAS  Google Scholar 

  20. Trulzsch K, Grabein B, Schumann P, Mellmann A, Antonenka U, Heesemann J et al (2007) Staphylococcus pettenkoferi sp. nov., a novel coagulase-negative staphylococcal species isolated from human clinical specimens. Int J Syst Evol Microbiol 57:1543–1548

    Article  PubMed  CAS  Google Scholar 

  21. Van de Peer Y, De Wachter R (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570

    PubMed  Google Scholar 

  22. Unemo M, Olcén P, Albert J, Fredlund H (2003) Comparison of serologic and genetic porB-based typing of Neisseria gonorrhoeae: consequences for future characterization. J Clin Microbiol 41:4141–4147

    Article  PubMed  CAS  Google Scholar 

  23. Harmsen D, Claus H, Witte W, Rothganger J, Claus H, Turnwald D et al (2003) Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J Clin Microbiol 41:5442–5448

    Article  PubMed  CAS  Google Scholar 

  24. Goh SH, Santucci Z, Kloos WE, Faltyn M, George CG, Driedger D et al (1997) Identification of Staphylococcus species and subspecies by the chaperonin 60 gene identification method and reverse checkerboard hybridization. J Clin Microbiol 35:3116–3121

    PubMed  CAS  Google Scholar 

  25. Devriese LA, Vancanneyt M, Baele M, Vaneechoutte M, De Graef E, Snauwaert C et al (2005) Staphylococcus pseudintermedius sp. nov., a coagulase-positive species from animals. Int J Syst Evol Microbiol 55:1569–1573

    Article  PubMed  CAS  Google Scholar 

  26. Sasaki T, Kikuchi K, Tanaka Y, Takahashi N, Kamata S, Hiramatsu K (2007) Reclassification of phenotypically identified Staphylococcus intermedius strains. J Clin Microbiol 45:2770–2778

    Article  PubMed  CAS  Google Scholar 

  27. O’Neill AJ, Huovinen T, Fishwick CW, Chopra I (2006) Molecular genetic and structural modeling studies of Staphylococcus aureus RNA polymerase and the fitness of rifampin resistance genotypes in relation to clinical prevalence. Antimicrob Agents Chemother 50:298–309

    Article  PubMed  CAS  Google Scholar 

  28. Sekiguchi J, Fujino T, Araake M, Toyota E, Kudo K, Saruta K et al (2006) Emergence of rifampicin resistance in methicillin-resistant Staphylococcus aureus in tuberculosis wards. J Infect Chemother 12:47–50

    Article  PubMed  CAS  Google Scholar 

  29. Wichelhaus TA, Schafer V, Brade V, Boddinghaus B (1999) Molecular characterization of rpoB mutations conferring cross-resistance to rifamycins on methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 43:2813–2816

    PubMed  CAS  Google Scholar 

  30. Simon GL, Smith RH, Sande MA (1983) Emergence of rifampin-resistant strains of Staphylococcus aureus during combination therapy with vancomycin and rifampin: a report of two cases. Rev Infect Dis 5 [Suppl 3]:S507–S508

    PubMed  Google Scholar 

  31. Zavasky DM, Sande MA (1998) Reconsideration of rifampin: a unique drug for a unique infection. JAMA 279:1575–1577

    Article  PubMed  CAS  Google Scholar 

  32. Berdal JE, Skramm I, Mowinckel P, Gulbrandsen P, Bjornholt JV (2005) Use of rifampicin and ciprofloxacin combination therapy after surgical debridement in the treatment of early manifestation prosthetic joint infections. Clin Microbiol Infect 11:843–845

    Article  PubMed  CAS  Google Scholar 

  33. Soriano A, Garcia S, Bori G, Almela M, Gallart X, Macule F et al (2006) Treatment of acute post-surgical infection of joint arthroplasty. Clin Microbiol Infect 12:930–933

    Article  PubMed  CAS  Google Scholar 

  34. Zimmerli W, Widmer AF, Blatter M, Frei R, Ochsner PE (1998) Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: a randomized controlled trial. Foreign-Body Infection (FBI) Study Group. JAMA 279:1537–1541

    Article  PubMed  CAS  Google Scholar 

  35. Peterson LR, Quick JN, Jensen B, Homann S, Johnson S, Tenquist J et al (1990) Emergence of ciprofloxacin resistance in nosocomial methicillin-resistant Staphylococcus aureus isolates. Resistance during ciprofloxacin plus rifampin therapy for methicillin-resistant S. aureus colonization. Arch Intern Med 150:2151–2155

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to express our appreciation of B. Christensson, Å. Nilsdotter and B. Isaksson for kindly providing S. aureus strains.

This study was supported by grants from the Örebro County Council Research Committee, Sweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Unemo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hellmark, B., Söderquist, B. & Unemo, M. Simultaneous species identification and detection of rifampicin resistance in staphylococci by sequencing of the rpoB gene. Eur J Clin Microbiol Infect Dis 28, 183–190 (2009). https://doi.org/10.1007/s10096-008-0604-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-008-0604-5

Keywords

Navigation