Abstract
Pyrosequencing was used to identify 133 isolates of clinically relevant non-dematiaceous yeasts. These included 97 ATCC strains (42 type strains), seven UAMH strains, and 29 clinical isolates. Isolates belonged to the following genera: Candida (18 species), Trichosporon (10), Cryptococcus (7), Malassezia (3), Rhodotorula (2), Geotrichum (1), Blastoschizomyces (1), and Kodamaea (1). Amplicons of a hyper-variable ITS region were obtained and analyzed using Pyrosequencing technology. The data were evaluated by a BLAST search against the GenBank database and correlated with data obtained by conventional cycle sequencing of the ITS1–5.8S–ITS2 region. Cycle sequencing identified 78.9% of the isolates to the species level. Pyrosequencing technology identified 69.1%. In 90.1% of all of the strains tested, the identification results of both sequencing methods were identical. Most Candida isolates can be identified to the species level by Pyrosequencing. Trichosporon species and some Cryptococcus species cannot be differentiated at the species level. Pyrosequencing can be used for the reliable identification of most commonly isolated non-dematiaceous yeasts, with a reduction of cost per identification compared to conventional sequencing.

Similar content being viewed by others
References
Walsh TJ, Groll A, Hiemenz J, Fleming R, Roilides E, Anaissie E (2004) Infections due to emerging and uncommon medically important fungal pathogens. Clin Microbiol Infect 10(Suppl 1):48–66
Vartivarian SE, Anaissie EJ, Bodey GP (1993) Emerging fungal pathogens in immunocompromised patients: classification, diagnosis, and management. Clin Infect Dis 17(Suppl 2):S487–S491
Aperis G, Myriounis N, Spanakis EK, Mylonakis E (2006) Developments in the treatment of candidiasis: more choices and new challenges. Expert Opin Investig Drugs 15:1319–1336
Taylor LH, Latham SM, Woolhouse ME (2001) Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci 356:983–989
Pfaller MA, Diekema DJ (2007) Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20:133–163
Bhally HS, Jain S, Shields C, Halsey N, Cristofalo E, Merz WG (2006) Infection in a neonate caused by Pichia fabianii: importance of molecular identification. Med Mycol 44:185–187
Ramani R, Gromadzki S, Pincus DH, Salkin IF, Chaturvedi V (1998) Efficacy of API 20C and ID 32C systems for identification of common and rare clinical yeast isolates. J Clin Microbiol 36:3396–3398
Coignard C, Hurst SF, Benjamin LE, Brandt ME, Warnock DW, Morrison CJ (2004) Resolution of discrepant results for Candida species identification by using DNA probes. J Clin Microbiol 42:858–861
Massonet C, Van Eldere J, Vaneechoutte M, De Baere T, Verhaegen J, Lagrou K (2004) Comparison of VITEK 2 with ITS2-fragment length polymorphism analysis for identification of yeast species. J Clin Microbiol 42:2209–2011
Chen SC, Halliday CL, Meyer W (2002) A review of nucleic acid-based diagnostic tests for systemic mycoses with an emphasis on polymerase chain reaction-based assays. Med Mycol 40:333–357
Summerbell RC, Lévesque CA, Seifert KA, Bovers M, Fell JW, Diaz MR, Boekhout T, de Hoog GS, Stalpers J, Crous PW (2005) Microcoding: the second step in DNA barcoding. Philos Trans R Soc Lond B Biol Sci 360:1897–1903
Linton CJ, Borman AM, Cheung G, Holmes AD, Szekely A, Palmer MD, Bridge PD, Campbell CK, Johnson EM (2007) Molecular identification of unusual pathogenic yeast isolates by large ribosomal subunit gene sequencing: 2 years of experience at the United Kingdom mycology reference laboratory. J Clin Microbiol 45:1152–1158
Leaw SN, Chang HC, Sun HF, Barton R, Bouchara JP, Chang TC (2006) Identification of medically important yeast species by sequence analysis of the internal transcribed spacer regions. J Clin Microbiol 44:693–699
Ahmadian A, Ehn M, Hober S (2006) Pyrosequencing: history, biochemistry and future. Clin Chim Acta 363:83–94
White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, California
Fakhrai-Rad H, Pourmand N, Ronaghi M (2002) Pyrosequencing: an accurate detection platform for single nucleotide polymorphisms. Hum Mutat 19:479–485
Tavanti A, Davidson AD, Gow NAR, Maiden MCJ, Odds FC (2005) Candida orthopsilosis and Candida metapsilosis spp. nov. to replace Candida parapsilosis groups II and III. J Clin Microbiol 43:284–292
Gácser A, Schäfer W, Nosanchuk JS, Salomon S, Nosanchuk JD (2007) Virulence of Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis in reconstituted human tissue models. Fungal Genet Biol 44:1336–1341
Hazen KC (1995) New and emerging yeast pathogens. Clin Microbiol Rev 8:462–478
Gharizadeh B, Norberg E, Löffler J, Jalal S, Tollemar J, Einsele H, Klingspor L, Nyrén P (2004) Identification of medically important fungi by the Pyrosequencing technology. Mycoses 47:29–33
Trama JP, Mordechai E, Adelson ME (2005) Detection and identification of Candida species associated with Candida vaginitis by real-time PCR and pyrosequencing. Mol Cell Probes 19:145–152
Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Meis JF, Gould IM, Fu W, Colombo AL, Rodriguez-Noriega E; Global Antifungal Surveillance Study (2007) Results from the ARTEMIS DISK Global Antifungal Surveillance study, 1997 to 2005: an 8.5-year analysis of susceptibilities of Candida species and other yeast species to fluconazole and voriconazole determined by CLSI standardized disk diffusion testing. J Clin Microbiol 45:1735–1745
Rodriguez-Tudela JL, Diaz-Guerra TM, Mellado E, Cano V, Tapia C, Perkins A, Gomez-Lopez A, Rodero L, Cuenca-Estrella M (2005) Susceptibility patterns and molecular identification of Trichosporon species. Antimicrob Agents Chemother 49:4026–4034
Diaz MR, Fell JW (2005) Use of a suspension array for rapid identification of the varieties and genotypes of the Cryptococcus neoformans species complex. J Clin Microbiol 43:3662–3672
Kwon-Chung KJ, Varma A (2006) Do major species concepts support one, two or more species within Cryptococcus neoformans? FEMS Yeast Res 6:574–587
Hazen KC, Howell SA (2007) Candida, Cryptococcus and other yeasts of medical importance. In: Murray PR, Baron EJ, Jorgensen JH, Landry ML, Pfaller MA (eds) Manual of clinical microbiology, 9th edn. ASM Press, Washington, DC, pp 1762–1788
Bovers M, Diaz MR, Hagen F, Spanjaard L, Duim B, Visser CE, Hoogveld HL, Scharringa J, Hoepelman IM, Fell JW, Boekhout T (2007) Identification of genotypically diverse Cryptococcus neoformans and Cryptococcus gattii isolates by Luminex xMAP technology. J Clin Microbiol 45:1874–1883
Fell JW, Scorzetti G (2004) Reassignment of the basidiomycetous yeasts Trichosporon pullulans to Guehomyces pullulans gen. nov., comb. nov. and Hyalodendron lignicola to Trichosporon lignicola comb. nov. Int J Syst Evol Microbiol 54:995–998
Holland SM, Shea YR, Kwon-Chung J (2004) Regarding “Trichosporon pullulans infection in 2 patients with chronic granulomatous disease.” J Allergy Clin Immunol 114:205–206
Takashima M, Sugita T, Shinoda T, Nakase T (2003) Three new combinations from the Cryptococcus laurentii complex: Cryptococcus aureus, Cryptococcus carnescens and Cryptococcus peneaus. Int J Syst Evol Microbiol 53:1187–1194
Ronaghi M (2000) Improved performance of pyrosequencing using single-stranded DNA-binding protein. Anal Biochem 286:282–288
Sullivan DJ, Moran GP, Coleman DC (2005) Candida dubliniensis: ten years on. FEMS Microbiol Lett 253:9–17
de Hoog GS, Guarro J, Gene J, Figueras MJ (2000) Atlas of clinical fungi, 2nd edn. Centraalbureau voor Schimmelcultures/Universitat Rovira i Virgili, Utrecht
Giammanco GM, Melilli D, Pizzo G (2004) Candida pararugosa isolation from the oral cavity of an Italian denture wearer. Res Microbiol 155:571–574
Bai FY, Takashima M, Nakase T (2001) Description of Bullera kunmingensis sp. nov., and clarification of the taxonomic status of Bullera sinensis and its synonyms based on molecular phylogenetic analysis. FEMS Yeast Res 1:103–109
Guého E, Midgley G, Guillot J (1996) The genus Malassezia with description of four new species. Antonie Van Leeuwenhoek 69:337–355
Centraalbureau vor Schimmelcultures (CBS) (2007) Fungal Biodiversity Center Yeast Database. Home page at: http://www.cbs.knaw.nl/yeast/BioloMICS.aspx
Acknowledgments
We thank Patricia S. Conville, Department of Laboratory Medicine, Warren Grant Magnuson Clinical Center, NIH, for her technical assistance. This research was supported by the Intramural Research Program of the NIH Clinical Center. The views expressed herein are those of the authors and should not be construed as those of the U.S. Department of Health and Human Services.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Montero, C.I., Shea, Y.R., Jones, P.A. et al. Evaluation of Pyrosequencing® technology for the identification of clinically relevant non-dematiaceous yeasts and related species. Eur J Clin Microbiol Infect Dis 27, 821–830 (2008). https://doi.org/10.1007/s10096-008-0510-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10096-008-0510-x