Skip to main content
Log in

Resistance, serotype and genetic diversity of Streptococcus pneumoniae-resistant strains isolated in the West Pomerania region of Poland in the years 2001–2005

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The aim of this study was to analyse the resistance patterns, serotypes and genetic diversity of Streptococcus pneumoniae-resistant strains isolated in the West Pomerania region of Poland. They were clinical isolates obtained during a 5-year study (2001–2005) mainly from ambulatory patients with upper respiratory tract infections. The strains showed resistance to 8 out of 9 tested antibiotics (except vancomycin) and 53.8% of the strains were multidrug-resistant (MDR). The increase over time in the number of MDR strains and in resistance degrees was not statistically significant. Resistance to cotrimoxazole was the most frequent (86.7%). Penicillin nonsusceptibility was shown in 38% of the strains and resistance to macrolides in 36.7% of the strains, mainly of MLSB phenotype (94.1%). A significant resistance increase was only observed for beta-lactam antibiotic. The population of S. pneumoniae-resistant strains in our region presented 31 resistance patterns, 13 serotypes and a high genetic diversity—70 pulse field gel electrophoresis (PFGE) profiles have been described: 44 of them were unique and 26 clusters consisted of 2 to 30 strains similar by more than 87%. Cluster I, grouping 30 strains of similar resistant patterns (TSH: 70%, SH, TH, T, H, S) and mainly serotype 19F, isolated over the 5 years of the study, could represent a new national clone. The polysaccharide 23-valent vaccine covers 83.5%, while the conjugated 7-, 9- and 11-valent vaccines cover 79.1–79.7% of the resistant strains collected in our region. A statistically significant decrease of vaccine coverage in time has been noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Feldman C, Klugman KP (1997) Pneumococcal infections. Curr Opin Infect Dis 10:109–115

    Article  Google Scholar 

  2. Klugman KP (1990) Pneumococcal resistance to antibiotics. Clin Microbiol Rev 3(2):171–196

    PubMed  CAS  Google Scholar 

  3. Metlay JP, Singer DE (2002) Outcomes in lower respiratory tract infections and the impact of antimicrobial drug resistance. Clin Microbiol Infect 8(Suppl 2):1–11

    Article  PubMed  Google Scholar 

  4. Hansman D, Bullen MM (1967) A resistant pneumococcus. Lancet 2:264–265

    Article  Google Scholar 

  5. Klugman KP, Feldman C (1999) Penicillin- and cephalosporin-resistant Streptococcus pneumoniae. Emerging treatment for an emerging problem. Drugs 58:1–4

    Article  PubMed  CAS  Google Scholar 

  6. Jacobs MR, Johnson CE (2003) Macrolide resistance: an increasing concern for treatment failure in children. Pediatr Infect Dis J 22:131–138

    Article  Google Scholar 

  7. Lister PD (1995) Multiply-resistant pneumococcus: therapeutic problems in the management of serious infections. Eur J Clin Microbiol Infect Dis 14(Suppl 1):18–25

    Google Scholar 

  8. Overweg K, Hermans PWM, Trzciński K, Sluijter M, de Groot R, Hryniewicz W (1999) Multidrug-resistant Streptococcus pneumoniae in Poland: identification of emerging clones. J Clin Microbiol 37(6):1739–1745

    PubMed  CAS  Google Scholar 

  9. Appelbaum PC, Gladkova C, Hryniewicz W, Kojouharov B, Kotulova D, Mihalcu F, Schindler J, Setchanova L, Semina N, Trupl J, Tyski S, Urbaskova P, Jacobs MR (1996) Carriage of antibiotic-resistant Streptococcus pneumoniae by children in Eastern and Central Europe—a multicenter study with use of standardized methods. Clin Infect Dis 23:712–717

    PubMed  CAS  Google Scholar 

  10. McGee L, McDougal L, Zhou J, Spratt BG, Tenover FC, George R, Hakenbeck R, Hryniewicz W, Lefévre JC, Tomasz A, Klugman KP (2001) Nomenclature of major antimicrobial-resistant clones of Streptococcus pneumoniae defined by the Pneumococcal Molecular Epidemiology Network. J Clin Microbiol 39(7):2565–2571

    Article  PubMed  CAS  Google Scholar 

  11. Jacobs MR, Felmingham D, Appelbaum PC, Grüneberg RN; The Alexander Project Group (2003) The Alexander Project 1998–2000: susceptibility of pathogens isolated from community-acquired respiratory tract infection to commonly used antimicrobial agents. J Antimicrob Chemother 52:229–246

    Article  PubMed  CAS  Google Scholar 

  12. Beekmann SE, Heilmann KP, Richter SS, García-de-Lomas J, Doern GV; The GRASP Study Group (2005) Antimicrobial resistance in Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis and group A beta-haemolytic streptococci in 2002–2003. Results of the multinational GRASP Surveillance Program. Int J Antimicrob Agents 25(2):148–156

    Article  PubMed  CAS  Google Scholar 

  13. Schrag SJ, Beall B, Dowell SF (2000) Limiting the spread of resistant pneumococci: biological and epidemiologic evidence for the effectiveness of alternative interventions. Clin Microbiol Rev 13(4):588–601

    Article  PubMed  CAS  Google Scholar 

  14. Butler JC, Breiman RF, Campbell JF, Lipman HB, Broome CV, Facklam RR (1993) Pneumococcal polysaccharide vaccine efficacy. An evaluation of current recommendations. JAMA 270:1826–1831

    Article  PubMed  CAS  Google Scholar 

  15. Black S, Shinefeld H, Fireman B, Lewis E, Ray P, Hansen JR, Elvin L, Ensor KM, Hackell J, Siber G, Malinoski F, Madore D, Chang I, Kohberger R, Watson W, Austrian R, Edwards K (2000) Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. Northern California Kaiser Permanente Vaccine Study Center Group. Pediatr Infect Dis J 19:187–195

    Article  PubMed  CAS  Google Scholar 

  16. Clinical Laboratory Standards Institute (CLSI) (2005) Performance standards for antimicrobial susceptibility testing: 15th informational supplement. Document M100-S15. CLSI, Wayne, PA

  17. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan B (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239

    PubMed  CAS  Google Scholar 

  18. McEllistrem MC, Stout JE, Harrison LH (2000) Simplified protocol for pulsed-field gel electrophoresis analysis of Streptococcus pneumoniae. J Clin Microbiol 38(1):351–353

    PubMed  CAS  Google Scholar 

  19. Kristinsson KG (1997) Effect of antimicrobial use and other risk factors on antimicrobial resistance in pneumococci. Microb Drug Resist 3:117–123

    Article  PubMed  CAS  Google Scholar 

  20. Holmes SJ, Solomon SL, Morrow AL, Schwartz B, Pickering LK (1997) Risk factors for carriage of penicillin-resistant Streptococcus pneumoniae in young children. Pediatr Res 41:122A

    Article  Google Scholar 

  21. Doern GV, Heilmann KP, Huynh HK, Rhomberg PR, Coffman SL, Brueggemann AB (2001) Antimicrobial resistance among clinical isolates of Streptococcus pneumoniae in the United States during 1999–2000, including a comparison of resistance rates since 1994–1995. Antimicrob Agents Chemother 45(6):1721–1729

    Article  PubMed  CAS  Google Scholar 

  22. Skoczyńska A, Kadłubowski M, Waśko I, Fiett J, Hryniewicz W (2007) Resistance patterns of selected respiratory tract pathogens in Poland. Clin Microbiol 13(4):377–383

    Article  Google Scholar 

  23. Semczuk K, Łopaciuk U, Dzierżanowska-Fangrat K, Gabińska E, Dmeńska H, Dzierżanowska D (2003) Antimicrobial resistance of Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis isolated from children with community-acquired respiratory tract infection treated at IP-CZD from 1999 to 2002 (in Polish: Analiza wrażliwości Streptococcus pneumoniae, Haemophilus influenzae i Moraxella catarrhalis wyodrębnionych z materiałów klinicznych od dzieci z zakażeniami dróg oddechowych leczonych w IP-CZD w latach 1999–2002). Pediatr Pol LXXVIII:173–180

    Google Scholar 

  24. Dzierżanowska-Fangrat K, Semczuk K, Górska P (2006) Evidence for tetracycline resistance determinant tet(M) allele replacement in a Streptococcus pneumoniae population of limited geographical origin. Int J Antimicrob Agents 27(2):159–164

    Article  PubMed  CAS  Google Scholar 

  25. Ayoubi P, Kilic AO, Vijayakumar MN (1991) Tn5253, the pneumococcal omega (cat tet) BM6001 element, is a composite structure of two conjugative transposons, Tn5251 and Tn5252. J Bacteriol 173:1617–1622

    PubMed  CAS  Google Scholar 

  26. Hryniewicz W (1994) Bacterial resistance in Eastern Europe—selected problems. Scand J Infect Dis Suppl 93:33–39

    PubMed  CAS  Google Scholar 

  27. Trzciński K, Hryniewicz W (1997) Antimicrobial susceptibility of common bacterial pathogens isolated from lower respiratory tract infections in Poland in 1996—the Alexander Project. Med Sci Monitor 3:714–722

    Google Scholar 

  28. Albrecht P (2006) Invasive and noninvasive pneumococcal disease – epidemiological studies (in Polish: Inwazyjna i nieinwazyjna choroba pneumokokowa—badania epidemiologiczne). Zakażenia 1:111–114

    Google Scholar 

  29. Hakenbeck R, Kamiński K, König A, van der Linden M, Paik J, Reichmann P, Zähner D (1999) Penicillin-binding proteins in beta-lactam-resistant Streptococcus pneumoniae. Microb Drug Resist 5:91–99

    PubMed  CAS  Google Scholar 

  30. Kelley MA, Weber DJ, Gilligan P, Cohen MS (2000) Breakthrough pneumococcal bacteremia in patients being treated with azithromycin and clarithromycin. Clin Infect Dis 31:1008–1011

    Article  PubMed  CAS  Google Scholar 

  31. Felmingham D, Grüneberg RN; The Alexander Project Group (2000) The Alexander Project 1996–1997: latest susceptibility data from this international study of bacterial pathogens from community-acquired lower respiratory tract infections. J Antimicrob Chemother 45:191–203

    Article  PubMed  CAS  Google Scholar 

  32. Johnston NJ, De Azavedo JC, Kellner JD, Low DE (1998) Prevalence and characterization of the mechanisms of macrolide, lincosamide, and streptogramin resistance in isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother 42:2425–2426

    PubMed  CAS  Google Scholar 

  33. Fenoll A, Asensio G, Jado I, Berrón S, Camacho MT, Ortega M, Casal J (2002) Antimicrobial susceptibility and pneumococcal serotypes. J Antimicrob Chemother 50(Suppl 2):13–19

    Article  PubMed  CAS  Google Scholar 

  34. Hausdorff WP, Bryant J, Paradiso PR, Siber GR (2000) Which pneumococcal serogroups cause the most invasive disease: implications for conjugate vaccine formulation and use, part I. Clin Infect Dis 30:100–121

    Article  PubMed  CAS  Google Scholar 

  35. Dagan R, Melamed R, Muallem M, Piglansky L, Greenberg D, Abramson O, Mendelman PM, Bohidar N, Yagupsky P (1996) Reduction of nasopharyngeal carriage of pneumococci during the second year of life by a heptavalent conjugate pneumococcal vaccine. J Infect Dis 174(6):1271–1278

    PubMed  CAS  Google Scholar 

  36. Klugman KP (2001) Efficacy of pneumococcal conjugate vaccines and their effect on carriage and antimicrobial resistance. Lancet Infect Dis 1:85–91

    Article  PubMed  CAS  Google Scholar 

  37. Spratt BG, Greenwood BM (2000) Prevention of pneumococcal disease by vaccination: does serotype replacement matter? Lancet 356:1210–1211

    Article  PubMed  CAS  Google Scholar 

  38. Coffey TJ, Enright MC, Daniels M, Morona JK, Morona R, Hryniewicz W, Paton JC, Spratt BG (1998) Recombinational exchanges at the capsular polysaccharide biosynthetic locus lead to frequent serotype changes among natural isolates of Streptococcus pneumoniae. Mol Microbiol 27:73–83

    Article  PubMed  CAS  Google Scholar 

  39. Dowson CG, Barcus V, King S, Pickerill P, Whatmore A, Yeo M (1997) Horizontal gene transfer and the evolution of resistance and virulence determinants in Streptococcus. Soc Appl Bacteriol Symp Ser 26:42S–51S

    PubMed  CAS  Google Scholar 

  40. Sulikowska A, Grzesiowski P, Sadowy E, Fiett J, Hryniewicz W (2004) Characteristics of Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis isolated from the nasopharynges of asymptomatic children and molecular analysis of S. pneumoniae and H. influenzae strain replacement in the nasopharynx. J Clin Microbiol 42(9):3942–3949

    Article  PubMed  CAS  Google Scholar 

  41. Sadowy E, Zhou J, Meats B, Gniadkowski M, Spratt BG, Hryniewicz W (2003) Identification of multidrug-resistant Streptococcus pneumoniae strains isolated in Poland by multilocus sequence typing. Microb Drug Resist 9(1):81–86

    Article  PubMed  CAS  Google Scholar 

  42. Izdebski R, Sadowy E, Hryniewicz W(2005) Molecular mechanisms of tetracycline resistance and clonal diversity of Streptococcus pneumoniae isolated from respiratory tract infections in Poland. In: Proceedings of the 15th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID), Copenhagen, Denmark, April 2005

  43. Skoczyńska A, Hryniewicz W (2003) Genetic relatedness, antibiotic susceptibility, and serotype distribution of Streptococcus pneumoniae responsible for meningitis in Poland, 1997–2001. Microb Drug Resist 9:175–182

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nowosiad.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 75 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowosiad, M., Giedrys-Kalemba, S. Resistance, serotype and genetic diversity of Streptococcus pneumoniae-resistant strains isolated in the West Pomerania region of Poland in the years 2001–2005. Eur J Clin Microbiol Infect Dis 27, 769–777 (2008). https://doi.org/10.1007/s10096-008-0501-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-008-0501-y

Keywords

Navigation