Skip to main content
Log in

A high-order compact finite difference method and its extrapolation for fractional mobile/immobile convection–diffusion equations

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

This paper is concerned with high-order numerical methods for a class of fractional mobile/immobile convection–diffusion equations. The convection coefficient of the equation may be spatially variable. In order to overcome the difficulty caused by variable coefficient problems, we first transform the original equation into a special and equivalent form, which is then discretized by a fourth-order compact finite difference approximation for the spatial derivative and a second-order difference approximation for the time first derivative and the Caputo time fractional derivative. The local truncation error and the solvability of the resulting scheme are discussed in detail. The (almost) unconditional stability and convergence of the method are proved using a discrete energy analysis method. A Richardson extrapolation algorithm is presented to enhance the temporal accuracy of the computed solution from the second-order to the third-order. Applications using two model problems give numerical results that demonstrate the accuracy of the new method and the high efficiency of the Richardson extrapolation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benson, D.A., Meerschaert, M.M.: A simple and efficient random walk solution of multi-rate mobile/immobile mass transport equations. Adv. Water Resour. 32, 532–539 (2009)

    Article  Google Scholar 

  2. Bromly, M., Hinz, C.: Non-Fickian transport in homogeneous unsaturated repacked sand. Water Resour. Res. 40, W07402 (2004)

    Article  Google Scholar 

  3. Cao, J.Y., Xu, C.J.: A high order schema for the numerical solution of the fractional ordinary differential equations. J. Comput. Phys. 238, 154–168 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, S., Liu, F., Zhuang, P., Anh, V.: Finite difference approximations for the fractional Fokker–Planck equation. Appl. Math. Model. 33, 256–273 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. de Smedt, F., Wierenga, P.J.: Solute transfer through columns of glass beads. Water Resour. Res. 20, 225–232 (1984)

    Article  Google Scholar 

  6. Dentz, M., Berkowitz, B.: Transport behavior of a passive solute in continuous time random walks and multirate mass transfer. Water Resour. Res. 39, 1111 (2003)

    Article  Google Scholar 

  7. Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  8. Dimitrov, Y.: Numerical approximations for fractional differential equations. J. Fract. Calc. Appl. 5, 1–45 (2014)

    MathSciNet  Google Scholar 

  9. Gao, G.H., Sun, H.W., Sun, Z.Z.: Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence. J. Comput. Phys. 280, 510–528 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gao, G.H., Sun, Z.Z., Zhang, H.W.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gaudet, J.P., Jegat, H., Vachaud, G., Wierenga, P.: Solute transfer, with exchange between mobile and stagnant water, through unsaturated sand. Soil Sci. Soc. Am. J. 41, 665–671 (1977)

    Article  Google Scholar 

  12. Goltz, M.N., Roberts, P.V.: Using the method of moments to analyze three-dimensional diffusion-limited solute transport from temporal and spatial perspectives. Water Resour. Res. 23, 1575–1585 (1987)

    Article  Google Scholar 

  13. Gouze, P., Melean, Y., Le Borgne, T., Dentz, M., Carrera, J.: Non-Fickian dispersion in porous media explained by heterogeneous microscale matrix diffusion. Water Resour. Res. 44, W11416 (2008)

    Google Scholar 

  14. Haggerty, R., McKenna, S.A., Meigs, L.C.: On the late-time behavior of tracer test breakthrough curves. Water Resour. Res. 36, 3467–3479 (2000)

    Article  Google Scholar 

  15. Harvey, C., Gorelick, S.M.: Rate-limited mass transfer or macrodispersion: which dominates plume evolution at the macrodispersion experiment (MADE) site? Water Resour. Res. 36, 637–650 (2000)

    Article  Google Scholar 

  16. Ji, C.C., Sun, Z.Z.: A high-order compact finite difference scheme for the fractional sub-diffusion equation. J. Sci. Comput. 64, 959–985 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, C.P., Chen, A., Ye, J.J.: Numerical approaches to fractional calculus and fractional ordinary differential equation. J. Comput. Phys. 230, 3352–3368 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, C.P., Zeng, F.H.: Numerical Methods for Fractional Calculus. Chapman and Hall/CRC, Boca Raton (2015)

    MATH  Google Scholar 

  19. Liao, W.: A compact high-order finite difference method for unsteady convection-diffusion equation. Int. J. Comput. Methods Eng. Sci. Mech. 13, 135–145 (2012)

  20. Liu, F., Zhuang, P., Burrage, K.: Numerical methods and analysis for a class of fractional advection–dispersion models. Comput. Math. Appl. 64, 2990–3007 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, Q., Liu, F., Turner, I., Anh, V., Gu, Y.T.: A RBF meshless approach for modeling a fractal mobile/immobile transport model. Appl. Math. Comput. 226, 336–347 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Meerschaert, M.M., Zhang, Y., Baeumer, B.: Particle tracking for fractional diffusion with two time scales. Comput. Math. Appl. 59, 1078–1086 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  24. Padilla, I.Y., Yeh, T.C.J., Conklin, M.H.: The effect of water content on solute transport in unsaturated porous media. Water Resour. Res. 35, 3303–3313 (1999)

    Article  Google Scholar 

  25. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, New York (1997)

    MATH  Google Scholar 

  26. Samarskii, A.A.: The Theory of Difference Schemes. Marcel Dekker Inc., New York (2001)

    Book  MATH  Google Scholar 

  27. Schumer, R.: Fractional derivatives, continuous time random walks, and anomalous solute transport. Ph.D. thesis, University of Nevada, Reno (2002)

  28. Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B.: Fractal mobile/immobile solute transport. Water Resour. Res. 39, 1296 (2003)

    Google Scholar 

  29. Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. van Genuchten, M.T., Wierenga, P.J.: Mass transfer studies in sorbing porous media I. Analytical solutions. Soil Sci. Soc. Am. J. 40, 473–480 (1976)

    Article  Google Scholar 

  31. Varga, R.S.: Matrix Iterative Analysis. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  32. Vong, S., Wang, Z.: High order difference schemes for a time-fractional differential equation with Neumann boundary conditions. East Asian J. Appl. Math. 4, 222–241 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, Y.M.: A compact finite difference method for solving a class of time fractional convection-subdiffusion equations. BIT 55, 1187–1217 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, Y.M.: A compact finite difference method for a class of time fractional convection-diffusion-wave equations with variable coefficients. Numer. Algorithms 70, 625–651 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, Z., Vong, S.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1–15 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhai, S.Y., Feng, X.L., He, Y.N.: An unconditionally stable compact ADI method for three-dimensional time-fractional convection-diffusion equation. J. Comput. Phys. 269, 138–155 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, H., Liu, F., Phanikumar, M.S., Meerschaert, M.M.: A novel numerical method for the time variable fractional order mobile-immobile advection–dispersion model. Comput. Math. Appl. 66, 693–701 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, Y., Benson, D.A., Reeves, D.M.: Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications. Adv. Water Resour. 32, 561–581 (2009)

    Article  Google Scholar 

  39. Zhang, Y., Meerschaert, M.M., Baeumer, B.: Particle tracking for time-fractional diffusion. Phys. Rev. E 78, 036705 (2008)

    Article  Google Scholar 

  40. Zhang, Y.N., Sun, Z.Z., Wu, H.W.: Error estimates of Crank–Nicolson-type difference schemes for the subdiffusion equation. SIAM J. Numer. Anal. 49, 2302–2322 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhao, L.J., Deng, W.H.: A series of high order quasi-compact schemes for space fractional diffusion equations based on the superconvergent approximations for fractional derivatives. Numer. Methods Partial Differ. Equ. 31, 1345–1381 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author would like to thank the referees for their valuable comments and suggestions which improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Ming Wang.

Additional information

This work was supported in part by Science and Technology Commission of Shanghai Municipality (STCSM) No. 13dz2260400 and E-Institutes of Shanghai Municipal Education Commission No. E03004.

Appendix

Appendix

In this appendix, we prove Propositions 5.15.3.

Proof of Proposition 5.1

When \(\frac{\partial u}{\partial t}(x,t)\) is bounded, \(\frac{\partial ^{\alpha } u}{\partial t^{\alpha }}(x,0)=0\) (see [8]). Also, we have \(\frac{\partial ^{2} u}{\partial x^{2}}(x,0)=0\) since \(u(x,0)=0\) for all \(x\in [0,L]\). Thus, by the governing equation of (2.1),

$$\begin{aligned} \displaystyle \frac{\partial u}{\partial t}(x,0)=-\beta \frac{\partial ^{\alpha } u}{\partial t^{\alpha }}(x,0)+D \displaystyle \frac{\partial ^{2} u}{\partial x^{2}}(x,0)+q(x) u(x,0)+g(x,0)=g(x,0). \end{aligned}$$

This proves (5.19). \(\square \)

Proof of of Proposition 5.2

By integrating by parts and by (5.19),

$$\begin{aligned} \frac{\partial ^{\alpha } u}{\partial t^{\alpha }}(x,t)= \frac{g(x,0)}{{\varGamma }(2-\alpha )} t^{1-\alpha }+\frac{1}{{\varGamma }(2-\alpha )} \int _{0}^{t} \frac{\partial ^{2} u}{\partial s^{2}}(x,s) (t-s)^{1-\alpha }\mathrm{d}s. \end{aligned}$$

This implies that the governing equation of (2.1) can be written as

$$\begin{aligned}&\frac{\partial u}{\partial t}(x,t)+\frac{\beta }{{\varGamma }(2-\alpha )} \int _{0}^{t} \frac{\partial ^{2} u}{\partial s^{2}}(x,s) (t-s)^{1-\alpha } \mathrm{d}s = D \frac{\partial ^{2} u}{\partial x^{2}}(x,t) \\&\quad +\,q(x) u(x,t)+F(x,t). \end{aligned}$$

Since \(u(x,t)\in \mathcal{C}^{2,2}([0,L]\times [0,T])\), we have

$$\begin{aligned} \frac{\partial F}{\partial t}(x,t)= & {} \frac{\partial ^{2} u}{\partial t^{2}}(x,t)+\beta {_{~0}^{C}}\mathcal{D}_{t}^{1+\alpha } u(x,t)-D \frac{\partial ^{3} u}{\partial t\partial x^{2}}(x,t) \\&-\,q(x)\frac{\partial u}{\partial t}(x,t) \end{aligned}$$

and

$$\begin{aligned} \displaystyle \lim _{t\rightarrow 0} \frac{\partial F}{\partial t}(x,t)= & {} \frac{\partial ^{2} u}{\partial t^{2}}(x,0)+\beta {_{~0}^{C}}\mathcal{D}_{t}^{1+\alpha } u(x,0)-D \frac{\partial ^{3} u}{\partial t\partial x^{2}}(x,0) -q(x)\frac{\partial u}{\partial t}(x,0)\\= & {} \displaystyle \frac{\partial ^{2} u}{\partial t^{2}}(x,0)-D \frac{\partial ^{2} ~}{\partial x^{2}} \left( \frac{\partial u}{\partial t}(x,0)\right) -q(x)\frac{\partial u}{\partial t}(x,0). \end{aligned}$$

This together with (5.19) proves (5.21). \(\square \)

Proof of of Proposition 5.3

By integrating by parts twice and by (5.19),

$$\begin{aligned} \frac{\partial ^{\alpha } u}{\partial t^{\alpha }}(x,t)= & {} \frac{g(x,0)}{{\varGamma }(2-\alpha )} t^{1-\alpha }+ \frac{1}{{\varGamma }(3-\alpha )} \frac{\partial ^{2} u}{\partial t^{2}}(x,0) t^{2-\alpha }\\&+ \frac{1}{{\varGamma }(3-\alpha )} \int _{0}^{t} \frac{\partial ^{3} u}{\partial s^{3}}(x,s)(t-s)^{2-\alpha }\mathrm{d}s. \end{aligned}$$

We therefore have from the governing equation of (2.1) that

$$\begin{aligned}&\frac{\partial u}{\partial t}(x,t)+\frac{\beta }{{\varGamma }(3-\alpha )} \int _{0}^{t} \frac{\partial ^{3} u}{\partial s^{3}}(x,s) (t-s)^{2-\alpha } \mathrm{d}s\\&\quad = D \frac{\partial ^{2} u}{\partial x^{2}}(x,t) +q(x) u(x,t)+G(x,t). \end{aligned}$$

Since \(u(x,t)\in \mathcal{C}^{2,3}([0,L]\times [0,T])\), we have

$$\begin{aligned} \frac{\partial ^{2} G}{\partial t^{2}}(x,t)=\frac{\partial ^{3} u}{\partial t^{3}}(x,t)+\beta {_{~0}^{C}}{D}_{t}^{2+\alpha } u(x,t)-D \frac{\partial ^{4} u}{\partial t^{2}\partial x^{2}}(x,t) -q(x)\frac{\partial ^{2} u}{\partial t^{2}}(x,t) \end{aligned}$$

and

$$\begin{aligned} \displaystyle \lim _{t\rightarrow 0} \frac{\partial ^{2} G}{\partial t^{2}}(x,t)= & {} \frac{\partial ^{3} u}{\partial t^{3}}(x,0)+\beta {_{~0}^{C}}\mathcal{D}_{t}^{2+\alpha } u(x,0)-D \frac{\partial ^{4} u}{\partial t^{2}\partial x^{2}}(x,0) -q(x)\frac{\partial ^{2} u}{\partial t^{2}}(x,0)\\= & {} \displaystyle \frac{\partial ^{3} u}{\partial t^{3}}(x,0)-D \frac{\partial ^{2} ~}{\partial x^{2}} \left( \frac{\partial ^{2} u}{\partial t^{2}}(x,0)\right) -q(x)\frac{\partial ^{2} u}{\partial t^{2}}(x,0). \end{aligned}$$

This proves that the limit \(\lim \nolimits _{t\rightarrow 0} \frac{\partial ^{2} G}{\partial t^{2}}(x,t)\) exists and (5.23) holds true. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YM. A high-order compact finite difference method and its extrapolation for fractional mobile/immobile convection–diffusion equations. Calcolo 54, 733–768 (2017). https://doi.org/10.1007/s10092-016-0207-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10092-016-0207-y

Keywords

Mathematics Subject Classification

Navigation