Skip to main content
Log in

Optimal control in non-convex domains: a priori discretization error estimates

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

An optimal control problem for a two-dimensional elliptic equation with pointwise control constraints is investigated. The domain is assumed to be polygonal but non-convex. The corner singularities are treated by a priori mesh grading. Approximations of the optimal solution of the continuous optimal control problem are constructed by a projection of the discrete adjoint state. It is proved that these approximations have convergence order h2.

Keywords Linear-quadratic optimal control problems, error estimates, elliptic equations, non-convex domains, corner singularities, control constraints, superconvergence.

Mathematics Subject Classification (2000): 49K20, 49M25, 65N30, 65N50

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • 1. Apel, T.: Interpolation in h-version finite element spaces. In: Stein, E. (eds.): Encyclopedia of computational mechanics. Vol. 1. Fundamentals. Hoboken, NJ: Wiley 2004, pp. 55–72

  • 2. Apel, T., Sändig, A.-M., Whiteman, J.: Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains. Math. Methods Appl. Sci. 19, 63–85 (1996)

    Google Scholar 

  • 3. Arada, N., Casas, E., Tröltzsch, F.: Error estimates for the numerical approximation of a semilinear elliptic control problem. Comput. Optim. Appl. 23, 201–229 (2002)

    Google Scholar 

  • 4. Babuška, I., Kellogg, R., Pitkäranta, J.: Direct and inverse error estimates for finite elements with mesh refinements. Numer. Math. 33, 447–471 (1979)

    Google Scholar 

  • 5. Casas, E.: Using piecewise linear functions in the numerical approximation of semilinear elliptic control problems. Adv. Comput. Math. 26, 137–153

  • 6. Casas, E., Mateos, M., Tröltzsch, F.: Error estimates for the numerical approximation of boundary semilinear elliptic control problems. Comput. Optim. Appl. 31, 193–219 (2005)

    Google Scholar 

  • 7. Casas, E., Tröltzsch, F.: Error estimates for linear-quadratic elliptic control problems. In: Barbo, V. et al. (eds.): Analysis and optimization of differential systems. Boston: Kluwer 2003, pp. 89–100

  • 8. Ciarlet, P.G.: The finite element method for elliptic problems. Amsterdam: North-Holland, 1978; Philadelphia: SIAM 2002

  • 9. Dauge, M.: Elliptic boundary value problems on corner domains. Smoothness and asymptotics of solutions. (1341) Lecture Notes in Mathematics. Berlin: Springer 1988

  • 10. Falk, R.: Approximation of a class of optimal control problems with order of convergence estimates. J. Math. Anal. Appl. 44, 28–47 (1973)

    Google Scholar 

  • 11. Fritzsch, R.: Optimale Finite-Elemente-Approximationen für Funktionen mit Singularitäten. Diss. Dresden: TU Dresden 1990

  • 12. Geveci, T.: On the approximation of the solution of an optimal control problem governed by an elliptic equation. RAIRO Anal. Num. 13, 313–328 (1979)

    Google Scholar 

  • 13. Grisvard, P.: Elliptic problems in nonsmooth domains. Monographs and Studies in Mathematics. Boston: Pitman 1985

  • 14. Hinze, M.: A variational discretization concept in control constrained optimization: the linear-quadratic case. Comput. Optim. Appl. 30, 45–61 (2005)

    Google Scholar 

  • 15. Kozlov, V.A., Maz'ya, V.G., Rossmann, J.: Elliptic boundary value problems in domains with point singularities. Providence, RI: American Mathematical Society 1997

  • 16. Kunisch, K., Rösch, A.: Primal-dual active set strategy for a general class of constrained optimal control problems. SIAM J. Optim. 13, 321–334 (2002)

    Google Scholar 

  • 17. Malanowski, K.: Convergence of approximations vs. regularity of solutions for convex, control-constrained optimal-control problems, Appl. Math. Optim. 8, 69–95 (1982)

    Google Scholar 

  • 18. Meyer, C., Rösch, A.: L-infty-estimates for approximated optimal control problems. SIAM J. Control Optim. 44, 1636–1649 (2005)

    Google Scholar 

  • 19. Meyer, C., Rösch, A.: Superconvergence properties of optimal control problems. SIAM J. Control Optim. 43, 970–985 (2004)

    Google Scholar 

  • 20. Nazarov, S.A., Plamenevsky, B.A.: Elliptic problems in domains with piecewise smooth boundary. (13) de Gruyter Expositions in Mathematics. Berlin: de Gruyter 1994

  • 21. Oganesyan, L.A., Rukhovets, L.A.: Variational-difference schemes for linear second-order elliptic equations in a two-dimensional region with piecewise smooth boundary. (Russian) Zh. Vychisl. Mat. Mat. Fiz. 8, 97–114 (1968) Translation: USSR Comput. Math. and Math. Phys. 8, 129–152 (1968)

  • 22. Oganesyan, L.A., Rukhovets, L.A.: Variational-difference methods for the solution of elliptic equations. (Russian) Erevan: Izd. Akad. Nauk Armyan. SSR. 1979

  • 23. Raugel, G.: Résolution numérique de problèmes elliptiques dans des domaines avec coins. Thèse 3e cycle. Rennes: Université de Rennes 1978

  • 24. Rösch, A.: Error estimates for parabolic optimal control problems with control constraints. Z. Anal. Anwendungen 23, 353–376 (2004)

    Google Scholar 

  • 25. Rösch, A.: Error estimates for linear-quadratic control problems with control constraints. Optim. Methods Softw. 21, 121–134 (2006)

    Google Scholar 

  • 26. Sändig, A.-M.: Error estimates for finite-element solutions of elliptic boundary value problems in nonsmooth domains. Z. Anal. Anwendungen 9, 133–153 (1990)

    Google Scholar 

  • 27. Schatz, A.H., Wahlbin, L.B.: Maximum norm estimates in the finite element method on plane polygonal domains. II. Refinements. Math. Comp. 33, 465–492 (1979)

    Google Scholar 

  • 28. Strang, G., Fix, G.: An analysis of the finite element method. Englewood Cliffs, NJ: Prentice–Hall 1973

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apel, T., Rösch, A. & Winkler, G. Optimal control in non-convex domains: a priori discretization error estimates. Calcolo 44, 137–158 (2007). https://doi.org/10.1007/s10092-007-0133-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10092-007-0133-0

Keywords

Navigation