Skip to main content

Advertisement

Log in

Impact of autonomic symptoms on the clinical course of Parkinson’s disease

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Purpose

Patients with Parkinson’s disease (PD) exhibit various degrees of autonomic symptoms, which may be associated with Lewy body pathology distributed extensively in the autonomic nervous system. We hypothesized that the severity of autonomic symptoms reflects the severity of PD-related pathology, resulting in poor outcomes. The purpose of this study was to evaluate the impact of autonomic symptoms on PD progression.

Methods

We conducted a follow-up study among consecutive patients with PD at Dokkyo Medical University Hospital. Patients underwent comprehensive baseline evaluations and were classified into high and low autonomic symptom groups using the Scale for Outcomes in Parkinson’s Disease–Autonomic (SCOPA-AUT). The Kaplan‒Meier survival curves were used to analyze the time to discontinuation of their visits because of PD-related endpoints and to evaluate the association with high SCOPA-AUT scores.

Results

Of the 101 patients, 74 (73%) met the inclusion criteria. During the follow-up period (mean 1654 days), 22/74 patients reached PD-related endpoints (death, 4; hospitalization, 9; nursing home institutionalization, 9). PD patients with high SCOPA-AUT scores reached the endpoints faster than those with low SCOPA-AUT scores. A high SCOPA-AUT score, including gastrointestinal, urinary, and thermoregulation domains; high motor symptom scores; and low specific binding ratios (SBRs) on 123I FP-CIT-SPECT (DAT-SPECT) were associated with reaching PD-related endpoints. A high SCOPA-AUT score was associated with reaching the endpoints even after adjustment for covariates.

Conclusions

Patients with high autonomic symptom scores had a greater risk of reaching PD-related endpoints than patients with low autonomic symptom scores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The data used in this study are available from the corresponding author upon request.

References

  1. Balestrino R, Schapira AHV (2020) Parkinson disease. Eur J Neurol 27(1):27–42

    Article  CAS  PubMed  Google Scholar 

  2. Pfeiffer RF (2020) Autonomic dysfunction in Parkinson’s disease. Neurotherapeutics 17(4):1464–1479

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chen Z, Li G, Liu J (2020) Autonomic dysfunction in Parkinson’s disease: implications for pathophysiology, diagnosis, and treatment. Neurobiol Dis 134:104700

    Article  PubMed  Google Scholar 

  4. Goldstein DS (2003) Dysautonomia in Parkinson’s disease: neurocardiological abnormalities. Lancet Neurol 2(11):669–676

    Article  PubMed  Google Scholar 

  5. Schapira AHV, Chaudhuri KR, Jenner P (2017) Non-motor features of Parkinson disease. Nat Rev Neurosci 18(7):435–450

    Article  CAS  PubMed  Google Scholar 

  6. Coon EA, Cutsforth-Gregory JK, Benarroch EE (2018) Neuropathology of autonomic dysfunction in synucleinopathies. Mov Disord 33(3):349–358

    Article  PubMed  Google Scholar 

  7. Goldstein DS, Holmes C, Sharabi Y, Wu T (2015) Survival in synucleinopathies: a prospective cohort study. Neurology 85(18):1554–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stubendorff K, Aarsland D, Minthon L, Londos E (2012) The impact of autonomic dysfunction on survival in patients with dementia with Lewy bodies and Parkinson’s disease with dementia. PLoS One 7(10):e45451

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. De Pablo-Fernandez E, Tur C, Revesz T, Lees AJ, Holton JL, Warner TT (2017) Association of autonomic dysfunction with disease progression and survival in Parkinson disease. JAMA Neurol 74(8):970–976

    Article  PubMed  PubMed Central  Google Scholar 

  10. Longardner K, Merola A, Litvan I, De Stefano AM, Maule S, Vallelonga F, Lopiano L, Romagnolo A (2022) Differential impact of individual autonomic domains on clinical outcomes in Parkinson’s disease. J Neurol 269(10):5510–5520

    Article  PubMed  PubMed Central  Google Scholar 

  11. Miller-Patterson C, Hsu JY, Chahine LM (2022) Early autonomic symptoms predict functional decline in Parkinson’s disease independent of dopaminergic therapy. Neurodegener Dis 22(1):15–23

    Article  CAS  PubMed  Google Scholar 

  12. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, Obeso J, Marek K, Litvan I, Lang AE et al (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30(12):1591–1601

    Article  PubMed  Google Scholar 

  13. Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17(5):427–442

    Article  CAS  PubMed  Google Scholar 

  14. Ideno Y, Takayama M, Hayashi K, Takagi H, Sugai Y (2012) Evaluation of a Japanese version of the Mini-Mental State Examination in elderly persons. Geriatr Gerontol Int 12(2):310–316

    Article  PubMed  Google Scholar 

  15. Schade S, Mollenhauer B, Trenkwalder C (2020) Levodopa equivalent dose conversion factors: an updated proposal including opicapone and safinamide. Mov Disord Clin Pract 7(3):343–345

    Article  PubMed  PubMed Central  Google Scholar 

  16. Saito S, Ayabe-Kanamura S, Takashima Y, Gotow N, Naito N, Nozawa T, Mise M, Deguchi Y, Kobayakawa T (2006) Development of a smell identification test using a novel stick-type odor presentation kit. Chem Senses 31(4):379–391

    Article  PubMed  Google Scholar 

  17. Matsushima M, Yabe I, Hirotani M, Kano T, Sasaki H (2014) Reliability of the Japanese version of the scales for outcomes in Parkinson’s disease-autonomic questionnaire. Clin Neurol Neurosurg 124:182–184

    Article  PubMed  Google Scholar 

  18. Fujita H, Suzuki K, Numao A, Watanabe Y, Uchiyama T, Miyamoto T, Miyamoto M, Hirata K (2016) Usefulness of cardiac MIBG scintigraphy, olfactory testing and substantia nigra hyperechogenicity as additional diagnostic markers for distinguishing between Parkinson’s disease and atypical parkinsonian syndromes. PLoS One 11(11):e0165869

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yoshii F, Ryo M, Baba Y, Koide T, Hashimoto J (2017) Combined use of dopamine transporter imaging (DAT-SPECT) and (123)I-metaiodobenzylguanidine (MIBG) myocardial scintigraphy for diagnosing Parkinson’s disease. J Neurol Sci 375:80–85

    Article  CAS  PubMed  Google Scholar 

  20. Austin PC, Lee DS, Fine JP (2016) Introduction to the analysis of survival data in the presence of competing risks. Circulation 133(6):601–609

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kanda Y (2013) Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 48(3):452–458

    Article  CAS  PubMed  Google Scholar 

  22. Fereshtehnejad SM, Zeighami Y, Dagher A, Postuma RB (2017) Clinical criteria for subtyping Parkinson’s disease: biomarkers and longitudinal progression. Brain 140(7):1959–1976

    Article  PubMed  Google Scholar 

  23. Mazzetti S, Basellini MJ, Ferri V, Cassani E, Cereda E, Paolini M, Calogero AM, Bolliri C, De Leonardis M, Sacilotto G et al (2020) α-Synuclein oligomers in skin biopsy of idiopathic and monozygotic twin patients with Parkinson’s disease. Brain 143(3):920–931

    Article  PubMed  PubMed Central  Google Scholar 

  24. Berg D, Borghammer P, Fereshtehnejad SM, Heinzel S, Horsager J, Schaeffer E, Postuma RB (2021) Prodromal Parkinson disease subtypes - key to understanding heterogeneity. Nat Rev Neurol 17(6):349–361

    Article  PubMed  Google Scholar 

  25. Horsager J, Knudsen K, Sommerauer M (2022) Clinical and imaging evidence of brain-first and body-first Parkinson’s disease. Neurobiol Dis 164:105626

    Article  CAS  PubMed  Google Scholar 

  26. Horsager J, Andersen KB, Knudsen K, Skjærbæk C, Fedorova TD, Okkels N, Schaeffer E, Bonkat SK, Geday J, Otto M et al (2020) Brain-first versus body-first Parkinson’s disease: a multimodal imaging case-control study. Brain 143(10):3077–3088

    Article  PubMed  Google Scholar 

  27. Warnecke T, Schäfer KH, Claus I, Del Tredici K, Jost WH (2022) Gastrointestinal involvement in Parkinson’s disease: pathophysiology, diagnosis, and management. NPJ Parkinsons Dis 8(1):31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fukuoka T, Ono T, Hori K, Wada Y, Uchiyama Y, Kasama S, Yoshikawa H, Domen K (2019) Tongue pressure measurement and videofluoroscopic study of swallowing in patients with Parkinson’s disease. Dysphagia 34(1):80–88

    Article  PubMed  Google Scholar 

  29. Ertekin C (2014) Electrophysiological evaluation of oropharyngeal Dysphagia in Parkinson’s disease. J Mov Disord 7(2):31–56

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hogg E, Frank S, Oft J, Benway B, Rashid MH, Lahiri S (2022) Urinary tract infection in Parkinson’s disease. J Parkinsons Dis 12(3):743–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sakakibara R, Hattori T, Uchiyama T, Yamanishi T (2001) Videourodynamic and sphincter motor unit potential analyses in Parkinson’s disease and multiple system atrophy. J Neurol Neurosurg Psychiatry 71(5):600–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. van Wamelen DJ, Leta V, Podlewska AM, Wan YM, Krbot K, Jaakkola E, Martinez-Martin P, Rizos A, Parry M, Metta V et al (2019) Exploring hyperhidrosis and related thermoregulatory symptoms as a possible clinical identifier for the dysautonomic subtype of Parkinson’s disease. J Neurol 266(7):1736–1742

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shindo K, Iida H, Watanabe H, Ohta E, Nagasaka T, Shiozawa Z (2008) Sympathetic sudomotor and vasoconstrictive neural function in patients with Parkinson’s disease. Parkinsonism Relat Disord 14(7):548–552

    Article  PubMed  Google Scholar 

  34. Kuzkina A, Schulmeyer L, Monoranu CM, Volkmann J, Sommer C, Doppler K (2019) The aggregation state of α-synuclein deposits in dermal nerve fibers of patients with Parkinson’s disease resembles that in the brain. Parkinsonism Relat Disord 64:66–72

    Article  CAS  PubMed  Google Scholar 

  35. Asahina M, Mathias CJ, Katagiri A, Low DA, Vichayanrat E, Fujinuma Y, Yamanaka Y, Kuwabara S (2014) Sudomotor and cardiovascular dysfunction in patients with early untreated Parkinson’s disease. J Parkinsons Dis 4(3):385–393

    Article  CAS  PubMed  Google Scholar 

  36. Coon EA, Low PA (2018) Thermoregulation in Parkinson disease. Handb Clin Neurol 157:715–725

    Article  PubMed  Google Scholar 

  37. Beyer C, Cappetta K, Johnson JA, Bloch MH (2017) Meta-analysis: risk of hyperhidrosis with second-generation antidepressants. Depress Anxiety 34(12):1134–1146

    Article  CAS  PubMed  Google Scholar 

  38. Hinkle JT, Perepezko K, Mills KA, Mari Z, Butala A, Dawson TM, Pantelyat A, Rosenthal LS, Pontone GM (2018) Dopamine transporter availability reflects gastrointestinal dysautonomia in early Parkinson disease. Parkinsonism Relat Disord 55:8–14

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kim R, Jun JS (2019) Association of autonomic symptoms with presynaptic striatal dopamine depletion in drug-naive Parkinson’s disease: an analysis of the PPMI data. Auton Neurosci 216:59–62

    Article  CAS  PubMed  Google Scholar 

  40. van Deursen DN, van den Heuvel OA, Booij J, Berendse HW, Vriend C (2020) Autonomic failure in Parkinson’s disease is associated with striatal dopamine deficiencies. J Neurol 267(7):1922–1930

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof. Yasuo Haruyama, Integrated Research Faculty for Advanced Medical Sciences, Dokkyo Medical University, for the helpful comments regarding the statistical analysis.

Author information

Authors and Affiliations

Authors

Contributions

Hiroaki Fujita, Keitaro Ogaki, Tomohiko Shiina, Hirotaka Sakuramoto, Narihiro Nozawa, and Keisuke Suzuki: conceptualization. Hiroaki Fujita and Keitaro Ogaki: data curation. Keisuke Suzuki: formal analysis and supervision. Tomohiko Shiina, Hirotaka Sakuramoto, and Narihiro Nozawa: investigation and methodology. Hiroaki Fujita and Narihiro Nozawa: project administration and writing—original draft. Keitaro Ogaki, Tomohiko Shiina, Hirotaka Sakuramoto, Narihiro Nozawa, and Keisuke Suzuki: writing—review and editing. All the authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Hiroaki Fujita.

Ethics declarations

Ethical approval

This study was performed in accordance with the Declaration of Helsinki and was approved by the Institutional Review Board of Dokkyo Medical University.

Consent to participate

All participants provided written informed consent.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujita, H., Ogaki, K., Shiina, T. et al. Impact of autonomic symptoms on the clinical course of Parkinson’s disease. Neurol Sci (2024). https://doi.org/10.1007/s10072-024-07422-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10072-024-07422-x

Keywords

Navigation