Skip to main content

Advertisement

Log in

Retinal clues for selective neuronal loss in multiple sclerosis

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Objective

The relationship between the cell body layer and the dendritic network layer of the retina and cognitive performance (CP) in MS patients has not been examined separately. The objective of this study is to predict cognitive impairment (CI) in RRMS patients and to examine the relationship between CP and ganglion cell layer (GCL), inner plexiform layer (IPL), and GCL divided by IPL (GCL/IPL).

Methods

Ophthalmological evaluation, retinal segmentation, and Symbol Digit Modalities Test (SDMT) were performed on 102 RRMS patients and 54 healthy subjects. The relationships of GCL, IPL, and GCL/IPL with CP in eyes without a history of optic neuritis were investigated using Spearman’s correlation. Models were created by accepting 1 standard deviation less of the SDMT mean of the control group as the limit for CI. The cutoff value of the GCL/IPL variable that could predict CI was calculated by ROC analysis, and the ability to accurately predict CI was tested with binary logistic regression.

Results

No correlation was found between OCT parameters and CP in healthy subjects. Correlation was found between GCL thickness and GCL/IPL variable and CP in RRMS patients (r=0.235, r=0.667 respectively). A GCL/IPL value of 1.255 was able to identify CI with 81.8% sensitivity and 75.9% specificity (AUC=0.844, LR=3.38) and predicted CI with 74.5% accuracy (Nagelkerke R2=0.439).

Conclusion

In RRMS patients, the IPL thickness is unrelated to CP. Therewithal, the GCL/IPL-CP relationship is stronger than the GCL-CP relationship and GCL/IPL can predict CI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

AUC:

Area under curve

CI:

Cognitive impairment

CP:

Cognitive performance

CNS:

Central nervous system

EDSS:

Expanded Disability Status Scale

ETDRS:

Early Treatment Diabetic Retinopathy Study

GCL:

Ganglion cell layer

IPL:

Inner plexiform layer

GCL/IPL:

GCL divided by IPL

INL:

Inner nuclear layer

LR:

Likelihood ratio

MCI:

Mild cognitive impairment

OCT:

Optical coherence tomography

ON:

Optic neuritis

RNFL:

Retinal nerve fiber layer

ROC:

Receiver operating characteristics

RRMS:

Relapsing remitting multiple sclerosis

SD:

Standard deviation

SDMT:

Symbol Digit Modalities Test

References

  1. Feinstein A (2021) Wordsworth, Bellow, and understanding multiple sclerosis. Lancet Neurol 20:177–178. https://doi.org/10.1016/S1474-4422(19)30222-4

    Article  PubMed  Google Scholar 

  2. Van Schependom J, D’hooghe MB, Cleynhens K et al (2014) The Symbol Digit Modalities Test as sentinel test for cognitive impairment in multiple sclerosis. Eur J Neurol 21. https://doi.org/10.1111/ene.12463

  3. Benedict RHB, Deluca J, Phillips G et al (2017) Validity of the Symbol Digit Modalities Test as a cognition performance outcome measure for multiple sclerosis. Mult Scler 23:721–733

    Article  PubMed  PubMed Central  Google Scholar 

  4. Strober L, DeLuca J, Benedict RHB et al (2019) Symbol Digit Modalities Test: a valid clinical trial endpoint for measuring cognition in multiple sclerosis. Mult Scler J 25:1781–1790. https://doi.org/10.1177/1352458518808204

    Article  Google Scholar 

  5. Amato MP, Portaccio E, Goretti B et al (2010) Relevance of cognitive deterioration in early relapsing-remitting MS: a 3-year follow-up study. Mult Scler 16:1474–1482. https://doi.org/10.1177/1352458510380089

    Article  PubMed  Google Scholar 

  6. Esmael A, Elsherif M, Abdelsalam M et al (2020) Retinal thickness as a potential biomarker of neurodegeneration and a predictor of early cognitive impairment in patients with multiple sclerosis. Neurol Res 42:564–574. https://doi.org/10.1080/01616412.2020.1761174

    Article  CAS  PubMed  Google Scholar 

  7. Jakimovski D, Benedict RHB, Weinstock-Guttman B et al (2021) Visual deficits and cognitive assessment of multiple sclerosis: confounder, correlate, or both? J Neurol. https://doi.org/10.1007/s00415-021-10437-5

  8. Bsteh G, Hegen H, Teuchner B et al (2019) Peripapillary retinal nerve fibre layer as measured by optical coherence tomography is a prognostic biomarker not only for physical but also for cognitive disability progression in multiple sclerosis. Mult Scler J 25:196–203. https://doi.org/10.1177/1352458517740216

    Article  Google Scholar 

  9. Coric D, Balk LJ, Verrijp M et al (2018) Cognitive impairment in patients with multiple sclerosis is associated with atrophy of the inner retinal layers. Mult Scler 24:158–166. https://doi.org/10.1177/1352458517694090

    Article  PubMed  Google Scholar 

  10. Kulkarni VA, Firestein BL (2012) The dendritic tree and brain disorders. Mol Cell Neurosci 50:10–20. https://doi.org/10.1016/J.MCN.2012.03.005

    Article  CAS  PubMed  Google Scholar 

  11. Reza-Zaldivar EE, Hernández-Sápiens MA, Minjarez B et al (2020) Dendritic spine and synaptic plasticity in Alzheimer’s disease: a focus on MicroRNA. Front Cell Dev Biol 8:1–9. https://doi.org/10.3389/fcell.2020.00255

    Article  Google Scholar 

  12. Hammond JW, Bellizzi MJ, Ware C et al (2020) Complement-dependent synapse loss and microgliosis in a mouse model of multiple sclerosis. Brain Behav Immun 87:739–750. https://doi.org/10.1016/j.bbi.2020.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jafari M, Schumacher AM, Snaidero N et al (2021) Phagocyte-mediated synapse removal in cortical neuroinflammation is promoted by local calcium accumulation. Nat Neurosci 24:355–367. https://doi.org/10.1038/s41593-020-00780-7

    Article  CAS  PubMed  Google Scholar 

  14. Tewarie P, Balk L, Costello F et al (2012) The OSCAR-IB consensus criteria for retinal OCT quality assessment. PLoS One 7. https://doi.org/10.1371/JOURNAL.PONE.0034823

  15. Early Treatment Diabetic Retinopathy Study research group (1985) Photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study report number 1. Arch Ophthalmol 103:1796–1806

    Article  Google Scholar 

  16. Nolan-Kenney RC, Liu M, Akhand O et al (2019) Optimal intereye difference thresholds by optical coherence tomography in multiple sclerosis: an international study. Ann Neurol 85:618–629. https://doi.org/10.1002/ana.25462

    Article  PubMed  Google Scholar 

  17. Gabilondo I, Martínez-Lapiscina EH, Martínez-Heras E et al (2014) Trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. Ann Neurol 75:98–107. https://doi.org/10.1002/ana.24030

    Article  CAS  PubMed  Google Scholar 

  18. Xu SC, Kardon RH, Leavitt JA et al (2019) Optical coherence tomography is highly sensitive in detecting prior optic neuritis. Neurology 92:e527–e535. https://doi.org/10.1212/WNL.0000000000006873

    Article  PubMed  Google Scholar 

  19. Interocular difference in retinal nerve fiber layer thickness predicts optic neuritis in pediatric-onset multiple sclerosis - PubMed. https://pubmed.ncbi.nlm.nih.gov/33105412/. Accessed 14 Apr 2021

  20. Pisa M, Croese T, Dalla Costa G et al (2021) Subclinical anterior optic pathway involvement in early multiple sclerosis and clinically isolated syndromes. Brain 144:848–862. https://doi.org/10.1093/brain/awaa458

    Article  PubMed  Google Scholar 

  21. Coombs J, van der List D, Wang G-Y, Chalupa LM (2006) Morphological properties of mouse retinal ganglion cells. Neuroscience 140:123–136. https://doi.org/10.1016/J.NEUROSCIENCE.2006.02.079

    Article  CAS  PubMed  Google Scholar 

  22. Kong J-H, Fish DR, Rockhill RL, Masland RH (2005) Diversity of ganglion cells in the mouse retina: unsupervised morphological classification and its limits. J Comp Neurol 489:293–310. https://doi.org/10.1002/CNE.20631

    Article  PubMed  Google Scholar 

  23. Sun W, Li N, He S (2002) Large-scale morphological survey of mouse retinal ganglion cells. J Comp Neurol 451:115–126. https://doi.org/10.1002/CNE.10323

    Article  PubMed  Google Scholar 

  24. Rockhill RL, Daly FJ, MacNeil MA et al (2002) The diversity of ganglion cells in a mammalian retina. J Neurosci 22:3831–3843. https://doi.org/10.1523/JNEUROSCI.22-09-03831.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Citron MC, Emerson RC, Levick WR (1988) Nonlinear measurement and classification of receptive fields in cat retinal ganglion cells. Ann Biomed Eng 16:65–77. https://doi.org/10.1007/BF02367381

    Article  CAS  PubMed  Google Scholar 

  26. Santina LD, Inman DM, Lupien CB et al (2013) Differential progression of structural and functional alterations in distinct retinal ganglion cell types in a mouse model of glaucoma. J Neurosci 33:17444–17457. https://doi.org/10.1523/JNEUROSCI.5461-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Subramaniam S (2019) Selective neuronal death in neurodegenerative diseases: the ongoing mystery. Yale J Biol Med 92(4):695–705

    MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schirmer L, Velmeshev D, Holmqvist S et al (2019) Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature 573:75–82. https://doi.org/10.1038/S41586-019-1404-Z

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mayer C, Bruehl C, Salt EL et al (2018) Selective vulnerability of αOFF retinal ganglion cells during onset of autoimmune optic neuritis. Neuroscience 393:258–272. https://doi.org/10.1016/J.NEUROSCIENCE.2018.07.040

    Article  CAS  PubMed  Google Scholar 

  30. Azevedo CJ, Overton E, Khadka S et al (2015) Early CNS neurodegeneration in radiologically isolated syndrome. Neurol(R) Neuroimmunology Neuroinflammation 2:e102. https://doi.org/10.1212/NXI.0000000000000102

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cilingir V, Batur M (2020) Axonal degeneration independent of inflammatory activity: is it more intense in the early stages of relapsing-remitting multiple sclerosis disease? Eur Neurol 83(5):508–516. https://doi.org/10.1159/000510116

  32. Cilingir V, Akdeniz H (2021) The course of cervical spinal cord atrophy rate and its relationship with NEDA in relapsing remitting multiple sclerosis. Acta Neurol Belg. https://doi.org/10.1007/s13760-021-01595-4

  33. Bsteh G, Berek K, Hegen H et al (2020) Macular ganglion cell–inner plexiform layer thinning as a biomarker of disability progression in relapsing multiple sclerosis. Mult Scler J:1–11. https://doi.org/10.1177/1352458520935724

  34. Noah AM, Almghairbi D, Moppett IK (2020) Optical coherence tomography in mild cognitive impairment – systematic review and meta-analysis. Clin Neurol Neurosurg 196:106036. https://doi.org/10.1016/j.clineuro.2020.106036

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vedat Cilingir.

Ethics declarations

Ethical approval

This study has been approved by the clinical research ethical committee of faculty of medicine-Van Yuzuncu Yil university.

Informed consent

All participants have provided an informed written consent before participation in this study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cilingir, ., Seven, E. Retinal clues for selective neuronal loss in multiple sclerosis. Neurol Sci 45, 1163–1171 (2024). https://doi.org/10.1007/s10072-023-07110-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-023-07110-2

Keywords

Navigation