Skip to main content
Log in

Olfactory dysfunction is associated with motor function only in tremor-dominant Parkinson’s disease

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

The prevalence of olfactory impairment in patients with Parkinson’s disease (PD) is 50–90%, and therefore, olfactory dysfunction is one of the most prevalent non-motor symptoms (NMSs) in patients with PD. Numerous studies have evaluated the association between motor and non-motor symptoms and olfactory dysfunction in PD.

Aim

In this study, we investigated the relationship between olfactory dysfunction, which is measured using the UPSIT test, with other motor and non-motor symptoms separately in three motor subtypes of PD, including tremor dominant (TD), postural instability and gait difficulty (PIGD), and indeterminate and healthy subjects.

Methods

We recruited 487 early-stage PD patients (43 PIGD, 406 TD, and 38 indeterminate) and healthy controls (HCs) (n = 197) from the Parkinson Progression Markers Initiative (PPMI). All participants completed motor and non-motor tests at baseline visit and after 4 years of follow-up. Subjects underwent common PD scaling tests.

Results

Olfactory dysfunction was significantly correlated with declined motor functions only in the TD subtype. Also, significant correlations were noticed between olfactory dysfunction and speed-attention processing and executive function in the HCs as well. Finally, no significant or meaningful association was observed in the PIGD and indeterminate subtype. Anosmia and hyposmia subjects in the TD group had the worse motor and non-motor scores compared to normosmia subjects after 4 years.

Conclusion

Olfactory dysfunction was significantly correlated with declined motor functions in the TD subtype. This is indicating that olfactory dysfunction may be an early motor and non-motor biomarker only in the TD subtype. However, it is possible that the involvement of olfactory function in other subtypes is not strong enough to make it a useful marker of diseases progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available upon request with no restriction.

References

  1. Trentin S, Fraiman de Oliveira BS, Ferreira Felloni Borges Y, de Mello Rieder CR (2021) Systematic review and meta-analysis of Sniffin Sticks Test performance in Parkinson's disease patients in different countries. Eur Arch Otorhinolaryngol. https://doi.org/10.1007/s00405-021-06970-8

  2. Dorsey ER, Sherer T, Okun MS, Bloem BR (2018) The emerging evidence of the Parkinson pandemic. J Parkinsons Dis 8(s1):S3–S8. https://doi.org/10.3233/JPD-181474

    Article  PubMed  PubMed Central  Google Scholar 

  3. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag A-E, Lang AE (2017) Parkinson disease. Nature Reviews Disease Primers 2017 3:1 3 (1):1–21 https://doi.org/10.1038/nrdp.2017.13

  4. Eek T, Larsson M, Dizdar N (2021) Odor Recognition memory in Parkinson’s disease: a systematic review. Frontiers in Aging Neuroscience 13:625171–625171. https://doi.org/10.3389/FNAGI.2021.625171

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fullard ME, Morley JF, Duda JE (2017) Olfactory dysfunction as an early biomarker in Parkinson’s disease. Neurosci Bull 33(5):515–515. https://doi.org/10.1007/S12264-017-0170-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rietdijk CD, Perez-Pardo P, Garssen J, van Wezel RJA, Kraneveld AD (2017) Exploring Braak’s hypothesis of Parkinson’s disease. Front in Neurol 8:1–1. https://doi.org/10.3389/FNEUR.2017.00037

    Article  Google Scholar 

  7. Morley JF, Cohen A, Silveira-Moriyama L, Lees AJ, Williams DR, Katzenschlager R, Hawkes C, Shtraks JP, Weintraub D, Doty RL, Duda JE (2018) Optimizing olfactory testing for the diagnosis of Parkinson’s disease: item analysis of the university of Pennsylvania smell identification test. npj Parkinson's Disease 2018 4:1 4 (1):1–7 https://doi.org/10.1038/s41531-017-0039-8

  8. Wang J, You H, Liu JF, Ni DF, Zhang ZX, Guan J (2011) Association of olfactory bulb volume and olfactory sulcus depth with olfactory function in patients with Parkinson disease. Am J Neuroradiol 32(4):677–681. https://doi.org/10.3174/AJNR.A2350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yoo HS, Chung SJ, Lee YH, Ye BS, Sohn YH, Lee PH (2020) Association between olfactory deficit and motor and cognitive function in parkinsons disease. J of Mov Disord 13(2):133–141. https://doi.org/10.14802/JMD.19082

    Article  Google Scholar 

  10. Rossi M, Escobar AM, Bril A, Vernetti PM, Palo JI, Cerquetti D, Merello M (2016) Motor features in Parkinson’s disease with normal olfactory function Movement disorders. off j of the Mov Disord Soc 31(9):1414–1417

    Article  Google Scholar 

  11. Qian E, Huang Y (2019) Subtyping of Parkinson’s disease - where are we up to. Aging Dis 10(5):1130–1139. https://doi.org/10.14336/AD.2019.0112

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jankovic J, McDermott M, Carter J, Gauthier S, Goetz C, Golbe L, Huber S, Koller W, Olanow C, Shoulson I, Stern M, Tanner C, Weiner W, Group PS (1990) Variable expression of Parkinsons disease. Neurol 40(10):1529–1529. https://doi.org/10.1212/WNL.40.10.1529

    Article  CAS  Google Scholar 

  13. Huang X, Ng SYE, Chia NSY, Setiawan F, Tay KY, Au WL, Tan EK, Tan LCS (2019) Non-motor symptoms in early Parkinson’s disease with different motor subtypes and their associations with quality of life. Eur J Neurol 26(3):400–406. https://doi.org/10.1111/ENE.13803

    Article  CAS  PubMed  Google Scholar 

  14. Paulus W, Jellinger K (1991) The neuropathologic basis of different clinical subgroups of Parkinson’s disease. J Neuropathol Exp Neurol 50(6):743–755. https://doi.org/10.1097/00005072-199111000-00006

    Article  CAS  PubMed  Google Scholar 

  15. Kang GA, Bronstein JM, Masterman DL, Redelings M, Crum JA, Ritz B (2005) Clinical characteristics in early Parkinson’s disease in a central California population-based study. Mov Disord 20(9):1133–1142. https://doi.org/10.1002/MDS.20513

    Article  PubMed  PubMed Central  Google Scholar 

  16. Herman T, Weiss A, Brozgol M, Giladi N, Hausdorff JM (2014) Gait and balance in Parkinson’s disease subtypes: objective measures and classification considerations. Journal of Neurology 2014 261:12 261 (12):2401–2410. https://doi.org/10.1007/S00415-014-7513-6

  17. Herman T, Weiss A, Brozgol M, Wilf-Yarkoni A, Giladi N, Hausdorff JM (2014) Cognitive function and other non-motor features in non-demented Parkinson’s disease motor subtypes. Journal of Neural Transmission 2014 122:8 122 (8):1115–1124 https://doi.org/10.1007/S00702-014-1349-1

  18. Xu C, Zhuang P, Hallett M, Zhang Y, Li J, Li Y (2018) Parkinson's Disease Motor Subtypes Show Different Responses to Long-Term Subthalamic Nucleus Stimulation. Front Hum Neurosci 12:365. https://doi.org/10.3389/fnhum.2018.00365

  19. Rezvanian S, Lockhart T, Frames C, Soangra R, Lieberman A (2018) Motor subtypes of Parkinson's disease can be identified by frequency component of postural stability. Sensors (Basel) 18(4):1102. https://doi.org/10.3390/s18041102

  20. Rudzińska M, Marona M, Bukowczan S, Banaszkiewicz K, Mirek E, Szczudlik A (2007) Falls in different types of Parkinson’s disease. Neurol Neurochir Pol 41(5):395–403

    PubMed  Google Scholar 

  21. Choi S-M, Kim BC, Cho B-H, Kang KW, Choi K-H, Kim J-T, Lee S-H, Park M-S, Kim M-K, Cho K-H (2018) Comparison of two motor subtype classifications in de novo Parkinson’s disease. Parkinsonism Relat Disord 54:74–78. https://doi.org/10.1016/J.PARKRELDIS.2018.04.021

    Article  PubMed  Google Scholar 

  22. Stebbins GT, Goetz CG, Burn DJ, Jankovic J, Khoo TK, Tilley BC (2013) How to identify tremor dominant and postural instability/gait difficulty groups with the movement disorder society unified Parkinson’s disease rating scale: comparison with the unified Parkinson’s disease rating scale. Mov disord off j of the Mov Disord Soc 28(5):668–670. https://doi.org/10.1002/mds.25383

    Article  Google Scholar 

  23. Masala C, Solla P, Liscia A, Defazio G, Saba L, Cannas A, Cavazzana A, Hummel T, Haehner A (2018) Correlation among olfactory function, motors’ symptoms, cognitive impairment, apathy, and fatigue in patients with Parkinson’s disease. J Neurol 265(8):1764–1771. https://doi.org/10.1007/s00415-018-8913-9

    Article  PubMed  Google Scholar 

  24. He R, Zhao Y, He Y, Zhou Y, Yang J, Zhou X, Zhu L, Zhou X, Liu Z, Xu Q, Sun Q, Tan J, Yan X, Tang B, Guo J (2020) Olfactory dysfunction predicts disease progression in Parkinson’s disease: a longitudinal study. Front Neurosci 14:569777. https://doi.org/10.3389/fnins.2020.569777

    Article  PubMed  PubMed Central  Google Scholar 

  25. Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211. https://doi.org/10.1016/s0197-4580(02)00065-9

    Article  PubMed  Google Scholar 

  26. Li W, Lao-Kaim NP, Roussakis AA, Martín-Bastida A, Valle-Guzman N, Paul G, Loane C, Widner H, Politis M, Foltynie T, Barker RA, Piccini P (2018) (11) C-PE2I and (18) F-Dopa PET for assessing progression rate in Parkinson’s: a longitudinal study. Mov Disord 33(1):117–127. https://doi.org/10.1002/mds.27183

    Article  CAS  PubMed  Google Scholar 

  27. Roos DS, Twisk JWR, Raijmakers P, Doty RL, Berendse HW (2019) Hyposmia as a marker of (non-)motor disease severity in Parkinson’s disease. J Neural Transm (Vienna) 126(11):1471–1478. https://doi.org/10.1007/s00702-019-02074-0

    Article  CAS  Google Scholar 

  28. Elhassanien MEM, Bahnasy WS, El-Heneedy YAE, Kishk AM, Tomoum MO, Ramadan KM, Allah Ragab OA (2021) Olfactory dysfunction in essential tremor versus tremor dominant Parkinson disease. Clin Neurol Neurosurg 200:106352. https://doi.org/10.1016/j.clineuro.2020.106352

    Article  PubMed  Google Scholar 

  29. Ondo WG, Lai D (2005) Olfaction testing in patients with tremor-dominant Parkinson’s disease: is this a distinct condition? Mov Disord 20(4):471–475. https://doi.org/10.1002/mds.20365

    Article  PubMed  Google Scholar 

  30. Kang P, Kloke J, Jain S (2012) Olfactory dysfunction and parasympathetic dysautonomia in Parkinson’s disease. Clin Auton Res 22(4):161–166. https://doi.org/10.1007/s10286-012-0158-6

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhao Y, He Y, He R, Zhou Y, Pan H, Zhou X, Zhu L, Zhou X, Liu Z, Xu Q, Sun Q, Tan J, Yan X, Tang B, Guo J (2020) The discriminative power of different olfactory domains in Parkinson’s disease. Front Neurol 11:420–420. https://doi.org/10.3389/fneur.2020.00420

    Article  PubMed  PubMed Central  Google Scholar 

  32. Healy DG, Falchi M, O’Sullivan SS, Bonifati V, Durr A, Bressman S, Brice A, Aasly J, Zabetian CP, Goldwurm S, Ferreira JJ, Tolosa E, Kay DM, Klein C, Williams DR, Marras C, Lang AE, Wszolek ZK, Berciano J, Schapira AH, Lynch T, Bhatia KP, Gasser T, Lees AJ, Wood NW (2008) Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. The Lancet Neurol 7(7):583–590. https://doi.org/10.1016/s1474-4422(08)70117-0

    Article  CAS  PubMed  Google Scholar 

  33. Ferreira JJ, Guedes LC, Rosa MM, Coelho M, van Doeselaar M, Schweiger D, Di Fonzo A, Oostra BA, Sampaio C, Bonifati V (2007) High prevalence of LRRK2 mutations in familial and sporadic Parkinson’s disease in Portugal. Mov Disord 22(8):1194–1201. https://doi.org/10.1002/mds.21525

    Article  PubMed  Google Scholar 

  34. Latourelle JC, Sun M, Lew MF, Suchowersky O, Klein C, Golbe LI, Mark MH, Growdon JH, Wooten GF, Watts RL, Guttman M, Racette BA, Perlmutter JS, Ahmed A, Shill HA, Singer C, Goldwurm S, Pezzoli G, Zini M, Saint-Hilaire MH, Hendricks AE, Williamson S, Nagle MW, Wilk JB, Massood T, Huskey KW, Laramie JM, DeStefano AL, Baker KB, Itin I, Litvan I, Nicholson G, Corbett A, Nance M, Drasby E, Isaacson S, Burn DJ, Chinnery PF, Pramstaller PP, Al-hinti J, Moller AT, Ostergaard K, Sherman SJ, Roxburgh R, Snow B, Slevin JT, Cambi F, Gusella JF, Myers RH (2008) The Gly2019Ser mutation in LRRK2 is not fully penetrant in familial Parkinson’s disease: the GenePD study. BMC Med 6:32. https://doi.org/10.1186/1741-7015-6-32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Khan NL, Jain S, Lynch JM, Pavese N, Abou-Sleiman P, Holton JL, Healy DG, Gilks WP, Sweeney MG, Ganguly M, Gibbons V, Gandhi S, Vaughan J, Eunson LH, Katzenschlager R, Gayton J, Lennox G, Revesz T, Nicholl D, Bhatia KP, Quinn N, Brooks D, Lees AJ, Davis MB, Piccini P, Singleton AB, Wood NW (2005) Mutations in the gene LRRK2 encoding dardarin (PARK8) cause familial Parkinson’s disease: clinical, pathological, olfactory and functional imaging and genetic data. Brain : a j of neurol 128(Pt 12):2786–2796. https://doi.org/10.1093/brain/awh667

    Article  Google Scholar 

  36. Goker-Alpan O, Lopez G, Vithayathil J, Davis J, Hallett M, Sidransky E (2008) The spectrum of parkinsonian manifestations associated with glucocerebrosidase mutations. Arch Neurol 65(10):1353–1357. https://doi.org/10.1001/archneur.65.10.1353

    Article  PubMed  PubMed Central  Google Scholar 

  37. Saunders-Pullman R, Hagenah J, Dhawan V, Stanley K, Pastores G, Sathe S, Tagliati M, Condefer K, Palmese C, Brüggemann N, Klein C, Roe A, Kornreich R, Ozelius L, Bressman S (2010) Gaucher disease ascertained through a Parkinson’s center: imaging and clinical characterization. Mov Disord 25(10):1364–1372. https://doi.org/10.1002/mds.23046

    Article  PubMed  PubMed Central  Google Scholar 

  38. Saunders-Pullman R, Stanley K, Wang C, San Luciano M, Shanker V, Hunt A, Severt L, Raymond D, Ozelius LJ, Lipton RB, Bressman SB (2011) Olfactory dysfunction in LRRK2 G2019S mutation carriers. Neurol 77(4):319–324. https://doi.org/10.1212/WNL.0b013e318227041c

    Article  CAS  Google Scholar 

  39. von Coelln R, Shulman LM (2016) Clinical subtypes and genetic heterogeneity: of lumping and splitting in Parkinson disease. Curr Opin Neurol 29(6):727–734. https://doi.org/10.1097/wco.0000000000000384

    Article  Google Scholar 

  40. Lee DH, Oh JS, Ham JH, Lee JJ, Lee I, Lee PH, Kim JS, Sohn YH (2015) Is normosmic Parkinson disease a unique clinical phenotype? Neurol 85(15):1270–1275. https://doi.org/10.1212/wnl.0000000000001999

    Article  CAS  Google Scholar 

  41. Rossi M, Escobar AM, Bril A, Millar Vernetti P, De Palo JI, Cerquetti D, Merello M (2016) Motor features in Parkinson’s disease with normal olfactory function. Mov Disord 31(9):1414–1417. https://doi.org/10.1002/mds.26687

    Article  PubMed  Google Scholar 

  42. Fullard ME, Tran B, Xie SX, Toledo JB, Scordia C, Linder C, Purri R, Weintraub D, Duda JE, Chahine LM, Morley JF (2016) Olfactory impairment predicts cognitive decline in early Parkinson’s disease. Parkinsonism Relat Disord 25:45–51. https://doi.org/10.1016/j.parkreldis.2016.02.013

    Article  PubMed  PubMed Central  Google Scholar 

  43. Soudry Y, Lemogne C, Malinvaud D, Consoli SM, Bonfils P (2011) Olfactory system and emotion: common substrates. Eur Ann Otorhinolaryngol Head Neck Dis 128(1):18–23. https://doi.org/10.1016/j.anorl.2010.09.007

    Article  CAS  PubMed  Google Scholar 

  44. Hong JY, Sunwoo MK, Ham JH, Lee JJ, Lee PH, Sohn YH (2015) Apathy and olfactory dysfunction in early Parkinson’s disease. J Mov Disord 8(1):21–25. https://doi.org/10.14802/jmd.14029

    Article  PubMed  PubMed Central  Google Scholar 

  45. Morley JF, Weintraub D, Mamikonyan E, Moberg PJ, Siderowf AD, Duda JE (2011) Olfactory dysfunction is associated with neuropsychiatric manifestations in Parkinson’s disease. Mov Disord 26(11):2051–2057. https://doi.org/10.1002/mds.23792

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Parkinson’s Progression Markers Initiative (PPMI) database (www.ppmi-info.org/data) was our primary source of data in this research. For up-to-date information on the study, see www.ppmiinfo.org. We gratefully thank all sponsors and funders of PPMI including the Michael J. Fox Foundation for Parkinson’s Research, AbbVie, Avid Radiopharmaceuticals, Biogen, Bristol-Myers Squibb, Covance, GE Healthcare, Genentech, GlaxoSmithKline (GSK), Eli Lilly and Company, Lundbeck, Merck, Meso Scale Discovery (MSD), Pfizer, Piramal Imaging, Roche, Servier, and UCB (www.ppmi-info.org/fundingpartners).

Author information

Authors and Affiliations

Authors

Contributions

FN and KP designed the study, analyzed the data, and wrote the paper; FN, EKH, and KP collected the data, analyzed and interpreted the data, and wrote the draft version of the manuscript. The manuscript was revised and approved by all authors.

Corresponding author

Correspondence to Fardin Nabizadeh.

Ethics declarations

Ethical approval

Since the data in this paper were obtained from the PPMI database (ppmi.loni.usc.edu), it does not include any research involving human or animal subjects.

Consent for publication

This manuscript has been approved for publication by all authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabizadeh, F., Pirahesh, K. & Khalili, E. Olfactory dysfunction is associated with motor function only in tremor-dominant Parkinson’s disease. Neurol Sci 43, 4193–4201 (2022). https://doi.org/10.1007/s10072-022-05952-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-022-05952-w

Keywords

Navigation