Skip to main content

Advertisement

Log in

Neurological side effects of radiation therapy

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Radiation therapy (RT) is one of the main treatments administered to patients with cancer. The development of technology has improved RT accuracy by allowing more precise delivery of high doses to the target volumes with reduced exposure of healthy tissue. Life expectancy has increased due to these therapeutic advancements and the patients’ quality of life remains a major concern. The adverse events related to RT are quite various and most likely will impair essential neurological functions, e.g. cognitive status. This literature review aims to describe the physiopathological processes, the neurological symptoms as well as the local modifications observed in magnetic resonance imaging following RT. The specific therapeutic options and preventive actions will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Saad S, Wang TJ (2015) Neurocognitive deficits after radiation therapy for brain malignancies. Am J Clin Oncol 38:634–640. https://doi.org/10.1097/COC.0000000000000158

    Article  PubMed  Google Scholar 

  2. International Agency for Research on Cancer (2021) Cancer Today. Estimated number of new cases in 2020, worldwide, both sexes, all ages. World Health Organization. https://gco.iarc.fr/today/online-analysis-table. Accessed 12 Nov 2021

  3. Borras JM, Lievens Y, Barton M et al (2016) How many new cancer patients in Europe will require radiotherapy by 2025? An ESTRO-HERO analysis. Radiother Oncol 119:5–11. https://doi.org/10.1016/j.radonc.2016.02.016

    Article  PubMed  Google Scholar 

  4. Greene-Schloesser D, Moore E, Robbins ME (2013) Molecular pathways: radiation-induced cognitive impairment. Clin Cancer Res 19:2294–2300. https://doi.org/10.1158/1078-0432.CCR-11-2903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Makale MT, McDonald CR, Hattangadi-Gluth JA et al (2017) Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours. Nat Rev Neurol 13:52–64. https://doi.org/10.1038/nrneurol.2016.185

    Article  CAS  PubMed  Google Scholar 

  6. Terziev R, Psimaras D, Marie Y et al (2021) Cumulative incidence and risk factors for radiation induced leukoencephalopathy in high grade glioma long term survivors. Sci Rep 11:10176. https://doi.org/10.1038/s41598-021-89216-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ellingson BM, Chung C, Pope WB et al (2017) Pseudoprogression, radionecrosis, inflammation or true tumor progression? challenges associated with glioblastoma response assessment in an evolving therapeutic landscape. J Neurooncol 134:495–504. https://doi.org/10.1007/s11060-017-2375-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lumniczky K, Szatmári T, Sáfrány G (2017) Ionizing radiation-induced immune and inflammatory reactions in the brain. Front Immunol 8:517. https://doi.org/10.3389/fimmu.2017.00517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li YQ, Chen P, Haimovitz-Friedman A et al (2003) Endothelial apoptosis initiates acute blood-brain barrier disruption after ionizing radiation. Cancer Res 63:5950–5956

    CAS  PubMed  Google Scholar 

  10. Brown WR, Thore CR, Moody DM et al (2005) Vascular damage after fractionated whole-brain irradiation in rats. Radiat Res 164:662–668. https://doi.org/10.1667/rr3453.1

    Article  CAS  PubMed  Google Scholar 

  11. Ruben JD, Dally M, Bailey M et al (2006) Cerebral radiation necrosis: incidence, outcomes, and risk factors with emphasis on radiation parameters and chemotherapy. Int J Radiat Oncol Biol Phys 65:499–508. https://doi.org/10.1016/j.ijrobp.2005.12.002

    Article  PubMed  Google Scholar 

  12. IJzerman-Korevaar M, Snijders TJ, de Graeff A, et al (2018) Prevalence of symptoms in glioma patients throughout the disease trajectory: a systematic review. J Neurooncol 140:485–496. https://doi.org/10.1007/s11060-018-03015-9

    Article  Google Scholar 

  13. Le Guyader M, Antoni D (2021) Under-recognized toxicities of cranial irradiation. Cancer Radiother 25:713–722. https://doi.org/10.1016/j.canrad.2021.06.019

    Article  PubMed  Google Scholar 

  14. Harjani RR, Gururajachar JM, Krishnaswamy U (2016) Comprehensive assessment of somnolence syndrome in patients undergoing radiation to the brain. Rep Pract Oncol Radiother 21:560–566. https://doi.org/10.1016/j.rpor.2016.08.003

    Article  PubMed  PubMed Central  Google Scholar 

  15. Douw L, Klein M, Fagel SS et al (2009) Cognitive and radiological effects of radiotherapy in patients with low-grade glioma: long-term follow-up. Lancet Neurol 8:810–818. https://doi.org/10.1016/S1474-4422(09)70204-2

    Article  PubMed  Google Scholar 

  16. Brown PD, Jensen AW, Felten SJ et al (2006) Detrimental effects of tumor progression on cognitive function of patients with high-grade glioma. J Clin Oncol 24:5427–5433. https://doi.org/10.1200/JCO.2006.08.5605

    Article  PubMed  Google Scholar 

  17. Klein M (2016) Lesion momentum as explanation for preoperative neurocognitive function in patients with malignant glioma. Neuro Oncol 18:1595–1596. https://doi.org/10.1093/neuonc/now266

    Article  PubMed  PubMed Central  Google Scholar 

  18. Karunamuni R, Tringale KR, Burkeen J et al (2020) Multi-domain neurocognitive classification of primary brain tumor patients prior to radiotherapy on a prospective clinical trial. J Neurooncol 146:131–138. https://doi.org/10.1007/s11060-019-03353-2

    Article  PubMed  Google Scholar 

  19. Soussain C, Ricard D, Fike JR et al (2009) CNS complications of radiotherapy and chemotherapy. Lancet 374:1639–1651. https://doi.org/10.1016/S0140-6736(09)61299-X

    Article  CAS  PubMed  Google Scholar 

  20. Bompaire F, Lahutte M, Buffat S et al (2018) New insights in radiation-induced leukoencephalopathy: a prospective cross-sectional study. Support Care Cancer 26:4217–4226. https://doi.org/10.1007/s00520-018-4296-9

    Article  PubMed  Google Scholar 

  21. Jacob J, Durand T, Feuvret L et al (2018) (2018) Cognitive impairment and morphological changes after radiation therapy in brain tumors: A review. Radiother Oncol 128:221–228. https://doi.org/10.1016/j.radonc.2018.05.027

    Article  PubMed  Google Scholar 

  22. Durand T, Jacob S, Lebouil L et al (2015) EpiBrainRad: an epidemiologic study of the neurotoxicity induced by radiotherapy in high grade glioma patients. BMC Neurol 15:261. https://doi.org/10.1186/s12883-015-0519-6

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nordal RA, Nagy A, Pintilie M et al (2004) Hypoxia and hypoxia-inducible factor-1 target genes in central nervous system radiation injury: a role for vascular endothelial growth factor. Clin Cancer Res 10:3342–3353. https://doi.org/10.1158/1078-0432.CCR-03-0426

    Article  CAS  PubMed  Google Scholar 

  24. Chao ST, Ahluwalia MS, Barnett GH et al (2013) Challenges with the diagnosis and treatment of cerebral radiation necrosis. Int J Radiat Oncol Biol Phys 87:449–457. https://doi.org/10.1016/j.ijrobp.2013.05.015

    Article  PubMed  Google Scholar 

  25. Noël G, Antoni D (2021) Organs at risk radiation dose constraints. Cancer Radiother S1278–3218(21):00272–00279. https://doi.org/10.1016/j.canrad.2021.11.001

    Article  Google Scholar 

  26. Patel UK, Patel K, Malik P et al (2020) Stroke-like migraine attacks after radiation therapy (SMART) syndrome-a case series and review. Neurol Sci 41:3123–3134. https://doi.org/10.1007/s10072-020-04586-0

    Article  PubMed  Google Scholar 

  27. Black DF, Bartleson JD, Bell ML et al (2006) SMART: stroke-like migraine attacks after radiation therapy. Cephalalgia 26:1137–1142. https://doi.org/10.1111/j.1468-2982.2006.01184.x

    Article  CAS  PubMed  Google Scholar 

  28. Rheims S, Ricard D, van den Bent M et al (2011) Peri-ictal pseudoprogression in patients with brain tumor. Neuro Oncol 13:775–782. https://doi.org/10.1093/neuonc/nor082

    Article  PubMed  PubMed Central  Google Scholar 

  29. Di Stefano AL, Berzero G, Vitali P et al (2013) Acute late-onset encephalopathy after radiotherapy: an unusual life-threatening complication. Neurology 81:1014–1017. https://doi.org/10.1212/WNL.0b013e3182a43b1f

    Article  PubMed  Google Scholar 

  30. Alemany M, Velasco R, Simó M et al (2020) Late effects of cancer treatment: consequences for long-term brain cancer survivors. Neurooncol Pract 8:18–30. https://doi.org/10.1093/nop/npaa039

    Article  PubMed  PubMed Central  Google Scholar 

  31. Di Stefano AL, Berzero G, Ducray F et al (2019) Stroke-like events after brain radiotherapy: a large series with long-term follow-up. Eur J Neurol 26:639–650. https://doi.org/10.1111/ene.13870

    Article  PubMed  Google Scholar 

  32. Murphy ES, Xie H, Merchant TE et al (2015) Review of cranial radiotherapy-induced vasculopathy. J Neurooncol 122:421–429. https://doi.org/10.1007/s11060-015-1732-2

    Article  CAS  PubMed  Google Scholar 

  33. Scott RM, Smith ER (2009) Moyamoya disease and moyamoya syndrome. N Engl J Med 360:1226–1237. https://doi.org/10.1056/NEJMra0804622

    Article  CAS  PubMed  Google Scholar 

  34. Tabrizi S, Yeap BY, Sherman JC et al (2019) Long-term outcomes and late adverse effects of a prospective study on proton radiotherapy for patients with low-grade glioma. Radiother Oncol 137:95–101. https://doi.org/10.1016/j.radonc.2019.04.027

    Article  PubMed  PubMed Central  Google Scholar 

  35. Li PC, Liebsch NJ, Niemierko A et al (2019) Radiation tolerance of the optic pathway in patients treated with proton and photon radiotherapy. Radiother Oncol 131:112–119. https://doi.org/10.1016/j.radonc.2018.12.007

    Article  PubMed  Google Scholar 

  36. D’Elia A, Tropeano MP, Maiola V et al (2015) The etiology of low-grade gliomas: pathological and clinical considerations about radiation-induced low-grade gliomas. Neurol Sci 36:1091–1095. https://doi.org/10.1007/s10072-015-2136-y

    Article  CAS  PubMed  Google Scholar 

  37. Connor M, Karunamuni R, McDonald C et al (2016) Dose-dependent white matter damage after brain radiotherapy. Radiother Oncol 121:209–216. https://doi.org/10.1016/j.radonc.2016.10.003

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhu T, Chapman CH, Tsien C et al (2016) Effect of the maximum dose on white matter fiber bundles using longitudinal diffusion tensor imaging. Int J Radiat Oncol Biol Phys 96:696–705. https://doi.org/10.1016/j.ijrobp.2016.07.010

    Article  PubMed  PubMed Central  Google Scholar 

  39. Connor M, Karunamuni R, McDonald C et al (2017) Regional susceptibility to dose-dependent white matter damage after brain radiotherapy. Radiother Oncol 123:209–217. https://doi.org/10.1016/j.radonc.2017.04.006

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tringale KR, Nguyen T, Bahrami N et al (2019) Identifying early diffusion imaging biomarkers of regional white matter injury as indicators of executive function decline following brain radiotherapy: a prospective clinical trial in primary brain tumor patients. Radiother Oncol 132:27–33. https://doi.org/10.1016/j.radonc.2018.11.018

    Article  PubMed  Google Scholar 

  41. Le Fèvre C, Lhermitte B, Ahle G et al (2021) Pseudoprogression versus true progression in glioblastoma patients: a multiapproach literature review: Part 1 - Molecular, morphological and clinical features. Crit Rev Oncol Hematol 157:103188. https://doi.org/10.1016/j.critrevonc.2020.103188

    Article  PubMed  Google Scholar 

  42. Nichelli L, Casagranda S (2021) Current emerging MRI tools for radionecrosis and pseudoprogression diagnosis. Curr Opin Oncol 33:597–607. https://doi.org/10.1097/CCO.0000000000000793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cuccurullo V, Di Stasio GD, Cascini GL et al (2019) The molecular effects of ionizing radiations on brain cells: radiation necrosis vs. tumor recurrence. Diagnostics 9:127. https://doi.org/10.3390/diagnostics9040127

  44. Kłos J, van Laar PJ, Sinnige PF et al (2019) Quantifying effects of radiotherapy-induced microvascular injury; review of established and emerging brain MRI techniques. Radiother Oncol 140:41–53. https://doi.org/10.1016/j.radonc.2019.05.020

    Article  PubMed  Google Scholar 

  45. Stone JB, DeAngelis LM (2016) Cancer-treatment-induced neurotoxicity–focus on newer treatments. Nat Rev Clin Oncol 13:92–105. https://doi.org/10.1038/nrclinonc.2015.152

    Article  CAS  PubMed  Google Scholar 

  46. Moretti R, Caruso P (2020) an iatrogenic model of brain small-vessel disease: post-radiation encephalopathy. Int J Mol Sci 21:6506. https://doi.org/10.3390/ijms21186506

    Article  CAS  PubMed Central  Google Scholar 

  47. Levin VA, Bidaut L, Hou P et al (2011) Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys 79:1487–1495. https://doi.org/10.1016/j.ijrobp.2009.12.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chung C, Bryant A, Brown PD (2018) Interventions for the treatment of brain radionecrosis after radiotherapy or radiosurgery. Cochrane Database Syst Rev 7:CD011492. https://doi.org/10.1002/14651858.CD011492.pub2

  49. Gehring K, Sitskoorn MM, Gundy CM et al (2009) Cognitive rehabilitation in patients with gliomas: a randomized, controlled trial. J Clin Oncol 27:3712–3722. https://doi.org/10.1200/JCO.2008.20.5765

    Article  PubMed  Google Scholar 

  50. Chi D, Behin A, Delattre J-Y (2008) Neurologic complications of radiation therapy. In: Schiff D, Kesari S, Wen PY (eds) Cancer Neurology in Clinical Practice. Humana Press, New Jersey, pp 259–286

    Chapter  Google Scholar 

  51. Ko HC, Powers AR, Sheu RD et al (2015) Lhermitte’s sign following VMAT-based head and neck radiation-insights into mechanism. PLoS ONE 10:e0139448. https://doi.org/10.1371/journal.pone.0139448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Peyraga G, Ducassou A, Arnaud FX et al (2021) Radiothérapie et toxicité médullaire : actualités et perspectives [Radiotherapy and spinal toxicity: News and perspectives]. Cancer Radiother 25:55–61. https://doi.org/10.1016/j.canrad.2020.05.017

    Article  CAS  PubMed  Google Scholar 

  53. Giglio P, Gilbert MR (2010) Neurologic complications of cancer and its treatment. Curr Oncol Rep 12:50–59. https://doi.org/10.1007/s11912-009-0071-x

    Article  PubMed  PubMed Central  Google Scholar 

  54. Khan M, Ambady P, Kimbrough D et al (2018) Radiation-induced myelitis: initial and follow-up MRI and clinical features in patients at a single tertiary care institution during 20 years. AJNR Am J Neuroradiol 39:1576–1581. https://doi.org/10.3174/ajnr.A5671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Silvestro S, Bramanti P, Trubiani O et al (2020) Stem cells therapy for spinal cord injury: an overview of clinical trials. Int J Mol Sci 21:659. https://doi.org/10.3390/ijms21020659

    Article  CAS  PubMed Central  Google Scholar 

  56. Rubin DI (2020) Brachial and lumbosacral plexopathies: a review. Clin Neurophysiol Pract 5:173–193. https://doi.org/10.1016/j.cnp.2020.07.005

    Article  PubMed  PubMed Central  Google Scholar 

  57. Yan M, Kong W, Kerr A et al (2019) The radiation dose tolerance of the brachial plexus: a systematic review and meta-analysis. Clin Transl Radiat Oncol 18:23–31. https://doi.org/10.1016/j.ctro.2019.06.006

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hoeller U, Bonacker M, Bajrovic A et al (2004) Radiation-induced plexopathy and fibrosis. is magnetic resonance imaging the adequate diagnostic tool? Strahlenther Onkol 180:650–654. https://doi.org/10.1007/s00066-004-1240-3

    Article  PubMed  Google Scholar 

  59. Jordan B, Margulies A, Cardoso F et al (2020) Systemic anticancer therapy-induced peripheral and central neurotoxicity: ESMO-EONS-EANO Clinical Practice Guidelines for diagnosis, prevention, treatment and follow-up. Ann Oncol 31:1306–1319. https://doi.org/10.1016/j.annonc.2020.07.003

    Article  CAS  PubMed  Google Scholar 

  60. Kazda T, Jancalek R, Pospisil P et al (2014) Why and how to spare the hippocampus during brain radiotherapy: the developing role of hippocampal avoidance in cranial radiotherapy. Radiat Oncol 9:139. https://doi.org/10.1186/1748-717X-9-139

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ma TM, Grimm J, McIntyre R et al (2017) A prospective evaluation of hippocampal radiation dose volume effects and memory deficits following cranial irradiation. Radiother Oncol 125:234–240. https://doi.org/10.1016/j.radonc.2017.09.035

    Article  PubMed  Google Scholar 

  62. Karunamuni RA, Moore KL, Seibert TM et al (2016) Radiation sparing of cerebral cortex in brain tumor patients using quantitative neuroimaging. Radiother Oncol 118:29–34. https://doi.org/10.1016/j.radonc.2016.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  63. Shih HA, Sherman JC, Nachtigall LB et al (2015) Proton therapy for low-grade gliomas: results from a prospective trial. Cancer 121:1712–1719. https://doi.org/10.1002/cncr.29237

    Article  PubMed  Google Scholar 

  64. Jalali R, Gupta T, Goda JS et al (2017) Efficacy of stereotactic conformal radiotherapy vs conventional radiotherapy on benign and low-grade brain tumors: a randomized clinical trial. JAMA Oncol 3:1368–1376. https://doi.org/10.1001/jamaoncol.2017.0997

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ruschin M, Sahgal A, Tseng CL et al (2017) Dosimetric impact of using a virtual couch shift for online correction of setup errors for brain patients on an integrated high-field magnetic resonance imaging linear accelerator. Int J Radiat Oncol Biol Phys 98:699–708. https://doi.org/10.1016/j.ijrobp.2017.03.004

    Article  PubMed  Google Scholar 

  66. Chaddad A, Kucharczyk MJ, Daniel P et al (2019) radiomics in glioblastoma: current status and challenges facing clinical implementation. Front Oncol 9:374. https://doi.org/10.3389/fonc.2019.00374

    Article  PubMed  PubMed Central  Google Scholar 

  67. Montay-Gruel P, Acharya MM, Gonçalves Jorge P et al (2021) Hypofractionated FLASH-RT as an effective treatment against glioblastoma that reduces neurocognitive side effects in mice. Clin Cancer Res 27:775–784. https://doi.org/10.1158/1078-0432.CCR-20-0894

    Article  PubMed  Google Scholar 

  68. Correa DD, Satagopan J, Baser RE et al (2014) APOE polymorphisms and cognitive functions in patients with brain tumors. Neurology 83:320–327. https://doi.org/10.1212/WNL.0000000000000617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Brown PD, Pugh S, Laack NN et al (2013) Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: a randomized, double-blind, placebo-controlled trial. Neuro Oncol 15:1429–1437. https://doi.org/10.1093/neuonc/not114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rapp SR, Case LD, Peiffer A et al (2015) Donepezil for irradiated brain tumor survivors: a phase III randomized placebo-controlled clinical trial. J Clin Oncol 33:1653–1659. https://doi.org/10.1200/JCO.2014.58.4508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jacob.

Ethics declarations

Ethical Approval

This literature review has been solicited to contribute to the preparation of a Topical Collection on the growing role for Neurology in Neuro-Oncology.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacob, J., Feuvret, L., Simon, JM. et al. Neurological side effects of radiation therapy. Neurol Sci 43, 2363–2374 (2022). https://doi.org/10.1007/s10072-022-05944-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-022-05944-w

Keywords

Navigation