Skip to main content

Advertisement

Log in

Four pedigrees with aminoacyl-tRNA synthetase abnormalities

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Aminoacyl tRNA synthetases (ARSs) are highly conserved enzymes that link amino acids to their cognate tRNAs. Thirty-seven ARSs are known and their deficiencies cause various genetic disorders. Variants in some ARSs are associated with the autosomal dominant inherited form of axonal neuropathy, including Charcot-Marie-Tooth (CMT) disease. Variants of genes encoding ARSs often cause disorders in an autosomal recessive fashion. The clinical features of cytosolic ARS deficiencies are more variable, including systemic features. Deficiencies of ARSs localized in the mitochondria are often associated with neurological disorders including Leigh and early-onset epileptic syndromes. Whole exome sequencing (WES) is an efficient way to identify the genes causing various symptoms in patients. We identified 4 pedigrees with novel compound heterozygous variants in ARS genes (WARS1, MARS1, AARS2, and PARS2) by WES. Some unique manifestations were noted. The number of patients with ARSs has been increasing since the application of WES. Our findings broaden the known genetic and clinical spectrum associated with ARS variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Antonellis A, Ellsworth RE, Sambuughin N, Puls I, Abel A, Lee-Lin SQ, Jordanova A, Kremensky I, Christodoulou K, Middleton LT, Sivakumar K, Ionasescu V, Funalot B, Vance JM, Goldfarb LG, Fischbeck KH, Green ED (2003) Glycyl tRNA synthetase mutations in Charcot-Marie-Tooth disease type 2D and distal spinal muscular atrophy type V. Am J Hum Genet 72(5):1293–1299. https://doi.org/10.1086/375039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jordanova A, Irobi J, Thomas FP, Van Dijck P, Meerschaert K, Dewil M, Dierick I, Jacobs A, De Vriendt E, Guergueltcheva V, Rao CV, Tournev I, Gondim FA, D’Hooghe M, Van Gerwen V, Callaerts P, Van Den Bosch L, Timmermans JP, Robberecht W, Gettemans J, Thevelein JM, De Jonghe P, Kremensky I, Timmerman V (2006) Disrupted function and axonal distribution of mutant tyrosyl-tRNA synthetase in dominant intermediate Charcot-Marie-Tooth neuropathy. Nat Genet 38(2):197–202. https://doi.org/10.1038/ng1727

    Article  CAS  PubMed  Google Scholar 

  3. Latour P, Thauvin-Robinet C, Baudelet-Méry C, Soichot P, Cusin V, Faivre L, Locatelli MC, Mayençon M, Sarcey A, Broussolle E, Camu W, David A, Rousson R (2010) A major determinant for binding and aminoacylation of tRNA(Ala) in cytoplasmic alanyl-tRNA synthetase is mutated in dominant axonal Charcot-Marie-Tooth disease. Am J Hum Genet 86(1):77–82. https://doi.org/10.1016/j.ajhg.2009.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McLaughlin HM, Sakaguchi R, Giblin W, Comparative Sequencing Program NISC, Wilson TE, Biesecker L, Lupski JR, Talbot K, Vance JM, Züchner S, Lee YC, Kennerson M, Hou YM, Nicholson G, Antonellis A (2012) A recurrent loss-of-function alanyl-tRNA synthetase (AARS) mutation in patients with Charcot-Marie-Tooth disease type 2N (CMT2N). Hum Mutat 33(1):244–253. https://doi.org/10.1002/humu.21635

    Article  CAS  PubMed  Google Scholar 

  5. Vester A, Velez-Ruiz G, McLaughlin HM, Comparative Sequencing Program NISC, Lupski JR, Talbot K, Vance JM, Züchner S, Roda RH, Fischbeck KH, Biesecker LG, Nicholson G, Beg AA, Antonellis A (2013) A loss-of-function variant in the human histidyl-tRNA synthetase (HARS) gene is neurotoxic in vivo. Hum Mutat 34(1):191–199. https://doi.org/10.1002/humu.22210

    Article  CAS  PubMed  Google Scholar 

  6. Gonzalez M, McLaughlin H, Houlden H, Guo M, Yo-Tsen L, Hadjivassilious M, Speziani F, Yang XL, Antonellis A, Reilly MM, Züchner S; Inherited Neuropathy Consortium. (2013) Exome sequencing identifies a significant variant in methionyl-tRNA synthetase (MARS) in a family with late-onset CMT2. Neurol Neurosurg Psychiatry 84(11):1247-1249. https://doi.org/10.1136/jnnp-2013-305049

  7. Simons C, Griffin LB, Helman G, Golas G, Pizzino A, Bloom M, Murphy JL, Crawford J, Evans SH, Topper S, Whitehead MT, Schreiber JM, Chapman KA, Tifft C, Lu KB, Gamper H, Shigematsu M, Taft RJ, Antonellis A, Hou YM, Vanderver A (2015) Loss-of-function alanyl-tRNA synthetase mutations cause an autosomal-recessive early-onset epileptic encephalopathy with persistent myelination defect. Am J Hum Genet 96(4):675–681. https://doi.org/10.1016/j.ajhg.2015.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Taft RJ, Vanderver A, Leventer RJ, Damiani SA, Simons C, Grimmond SM, Miller D, Schmidt J, Lockhart PJ, Pope K, Ru K, Crawford J, Rosser T, de Coo IF, Juneja M, Verma IC, Prabhakar P, Blaser S, Raiman J, Pouwels PJ, Bevova MR, Abbink TE, van der Knaap MS, Wolf NI (2013) Mutations in DARS cause hypomyelination with brain stem and spinal cord involvement and leg spasticity. Am J Hum Genet 92(5):774–780. https://doi.org/10.1016/j.ajhg.2013.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wolf NI, Salomons GS, Rodenburg RJ, Pouwels PJ, Schieving JH, Derks TG, Fock JM, Rump P, van Beek DM, van der Knaap MS, Waisfisz Q (2014) Mutations in RARS cause hypomyelination. Ann Neurol 76(1):134–139. https://doi.org/10.1002/ana.24167

    Article  CAS  PubMed  Google Scholar 

  10. Nafisinia M, Sobreira N, Riley L, Gold W, Uhlenberg B, Weiß C, Boehm C, Prelog K, Ouvrier R, Christodoulou J (2017) Mutations in RARS cause a hypomyelination disorder akin to Pelizaeus-Merzbacher disease. Eur J Hum Genet 25(10):1134–1141. https://doi.org/10.1038/ejhg.2017.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kuo ME, Theil AF, Kievit A, Malicdan MC, Introne WJ, Christian T, Verheijen FW, Smith DEC, Mendes MI, Hussaarts-Odijk L, van der Meijden E, van Slegtenhorst M, Wilke M, Vermeulen W, Raams A, Groden C, Shimada S, Meyer-Schuman R, Hou YM, Gahl WA, Antonellis A, Salomons GS, Mancini GMS (2019) Cysteinyl-tRNA synthetase mutations cause a multi-system, recessive disease that includes microcephaly, developmental delay, and brittle hair and nails. Am J Hum Genet 104(3):520–529. https://doi.org/10.1016/j.ajhg.2019.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Karaca E, Harel T, Pehlivan D, Jhangiani SN, Gambin T, Coban Akdemir Z, Gonzaga-Jauregui C, Erdin S, Bayram Y, Campbell IM, Hunter JV, Atik MM, Van Esch H, Yuan B, Wiszniewski W, Isikay S, Yesil G, Yuregir OO, Tug Bozdogan S, Aslan H, Aydin H, Tos T, Aksoy A, De Vivo DC, Jain P, Geckinli BB, Sezer O, Gul D, Durmaz B, Cogulu O, Ozkinay F, Topcu V, Candan S, Cebi AH, Ikbal M, Yilmaz Gulec E, Gezdirici A, Koparir E, Ekici F, Coskun S, Cicek S, Karaer K, Koparir A, Duz MB, Kirat E, Fenercioglu E, Ulucan H, Seven M, Guran T, Elcioglu N, Yildirim MS, Aktas D, Alikaşifoğlu M, Ture M, Yakut T, Overton JD, Yuksel A, Ozen M, Muzny DM, Adams DR, Boerwinkle E, Chung WK, Gibbs RA, Lupski JR (2015) Genes that affect brain structure and function identified by rare variant analyses of Mendelian neurologic disease. Neuron 88(3):499–513. https://doi.org/10.1016/j.neuron.2015.09.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nakayama T, Wu J, Galvin-Parton P, Weiss J, Andriola MR, Hill RS, Vaughan DJ, El-Quessny M, Barry BJ, Partlow JN, Barkovich AJ, Ling J, Mochida GH (2017) Deficient activity of alanyl-tRNA synthetase underlies an autosomal recessive syndrome of progressive microcephaly, hypomyelination, and epileptic encephalopathy. Hum Mutat 38(10):1348–1354. https://doi.org/10.1002/humu.23250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nowaczyk MJ, Huang L, Tarnopolsky M, Schwartzentruber J, Majewski J, Bulman DE; FORGE Canada Consortium, Care4Rare Canada Consortium, Hartley T, Boycott KM. (2007) A novel multisystem disease associated with recessive mutations in the tyrosyl-tRNA synthetase (YARS) gene. Am J Med Genet A. 173(1):126-134. https://doi.org/10.1002/ajmg.a.37973

  15. Scheper GC, van der Klok T, van Andel RJ, van Berkel CG, Sissler M, Smet J, Muravina TI, Serkov SV, Uziel G, Bugiani M, Schiffmann R, Krägeloh-Mann I, Smeitink JA, Florentz C, Van Coster R, Pronk JC, van der Knaap MS (2007) Mitochondrial aspartyl-tRNA synthetase deficiency causes leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation. Nat Genet 39(4):534–539. https://doi.org/10.1038/ng2013

    Article  CAS  PubMed  Google Scholar 

  16. McLaughlin HM, Sakaguchi R, Liu C, Igarashi T, Pehlivan D, Chu K, Iyer R, Cruz P, Cherukuri PF, Hansen NF, Mullikin JC, Comparative Sequencing Program NISC, Biesecker LG, Wilson TE, Ionasescu V, Nicholson G, Searby C, Talbot K, Vance JM, Züchner S, Szigeti K, Lupski JR, Hou YM, Green ED, Antonellis A (2010) Compound heterozygosity for loss-of-function lysyl-tRNA synthetase mutations in a patient with peripheral neuropathy. Am J Hum Genet 87(4):560–566. https://doi.org/10.1016/j.ajhg.2010.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Okamoto N, Miya F, Tsunoda T, Yanagihara K, Kato M, Saitoh S, Yamasaki M, Kanemura Y, Kosaki K (2014) KIF1A mutation in a patient with progressive neurodegeneration. J Hum Genet 59(11):639–641. https://doi.org/10.1038/jhg.2014.80

    Article  CAS  PubMed  Google Scholar 

  18. Azuma N, Uchida T, Kikuchi S, Sadahiro M, Shintani T, Yanagi K, Higashita R, Yamashita A, Makita Y, Kaname T (2020) NT5E gene mutation is a rare but important cause of intermittent claudication and chronic limb-threatening ischemia. Circ J 84(7):1183–1188. https://doi.org/10.1253/circj.CJ-20-0153

    Article  CAS  PubMed  Google Scholar 

  19. Maddirevula S, Alzahrani F, Al-Owain M, Al Muhaizea MA, Kayyali HR, AlHashem A, Rahbeeni Z, Al-Otaibi M, Alzaidan HI, Balobaid A, El Khashab HY, Bubshait DK, Faden M, Yamani SA, Dabbagh O, Al-Mureikhi M, Jasser AA, Alsaif HS, Alluhaydan I, Seidahmed MZ, Alabbasi BH, Almogarri I, Kurdi W, Akleh H, Qari A, Al Tala SM, Alhomaidi S, Kentab AY, Salih MA, Chedrawi A, Alameer S, Tabarki B, Shamseldin HE, Patel N, Ibrahim N, Abdulwahab F, Samira M, Goljan E, Abouelhoda M, Meyer BF, Hashem M, Shaheen R, AlShahwan S, Alfadhel M, Ben-Omran T, Al-Qattan MM, Monies D, Alkuraya FS (2019) Autozygome and high throughput confirmation of disease genes candidacy. Genet Med 21(3):736–742. https://doi.org/10.1038/s41436-018-0138-x

    Article  CAS  PubMed  Google Scholar 

  20. Tsai PC, Soong BW, Mademan I, Huang YH, Liu CR, Hsiao CT, Wu HT, Liu TT, Liu YT, Tseng YT, Lin KP, Yang UC, Chung KW, Choi BO, Nicholson GA, Kennerson ML, Chan CC, De Jonghe P, Cheng TH, Liao YC, Züchner S, Baets J, Lee YC (2017) A recurrent WARS mutation is a novel cause of autosomal dominant distal hereditary motor neuropathy. Brain 140(5):1252–1266. https://doi.org/10.1093/brain/awx058

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang B, Li X, Huang S, Zhao H, Liu J, Hu Z, Lin Z, Liu L, Xie Y, Jin Q, Zhao H, Tang B, Niu Q, Zhang R (2019) A novel WARS mutation (p.Asp314Gly) identified in a Chinese distal hereditary motor neuropathy family. Clin Genet. 96(2):176–182. https://doi.org/10.1111/cge.13563

    Article  CAS  PubMed  Google Scholar 

  22. Hyun YS, Park HJ, Heo SH, Yoon BR, Nam SH, Kim SB, Park CI, Choi BO, Chung KW (2014) Rare variants in methionyl- and tyrosyl-tRNA synthetase genes in late-onset autosomal dominant Charcot-Marie-Tooth neuropathy. Clin Genet 86(6):592–594. https://doi.org/10.1111/cge.12327

    Article  CAS  PubMed  Google Scholar 

  23. Hirano M, Oka N, Hashiguchi A, Ueno S, Sakamoto H, Takashima H, Higuchi Y, Kusunoki S, Nakamura Y (2016) Histopathological features of a patient with Charcot-Marie-Tooth disease type 2U/AD-CMTax-MARS. J Peripher Nerv Syst 21(4):370–374. https://doi.org/10.1111/jns.12193

    Article  CAS  PubMed  Google Scholar 

  24. Nam SH, Hong YB, Hyun YS, Nam da E, Kwak G, Hwang SH, Choi BO, Chung KW. (2016) Identification of genetic causes of inherited peripheral neuropathies by targeted gene panel sequencing. Mol Cells. 39(5):382–8. https://doi.org/10.14348/molcells.2016.2288.

  25. Sagi-Dain L, Shemer L, Zelnik N, Zoabi Y, Orit S, Adir V, Schif A, Peleg A (2018) Whole-exome sequencing reveals a novel missense mutation in the MARS gene related to a rare Charcot-Marie-Tooth neuropathy type 2U. J Peripher Nerv Syst 23(2):138–142. https://doi.org/10.1111/jns.12264

    Article  CAS  PubMed  Google Scholar 

  26. Gillespie MK, McMillan HJ, Kernohan KD, Pena IA, Meyer-Schuman R; Care4Rare Canada Consortium, Antonellis A, Boycott KM. (2019) A novel mutation in MARS in a patient with Charcot-Marie-Tooth disease, axonal, type 2U with congenital onset. J Neuromuscul Dis. 6(3):333-339. https://doi.org/10.3233/JND-190404

  27. van Meel E, Wegner DJ, Cliften P, Willing MC, White FV, Kornfeld S, Cole FS (2013) Rare recessive loss-of-function methionyl-tRNA synthetase mutations presenting as a multi-organ phenotype. BMC Med Genet 14:106. https://doi.org/10.1186/1471-2350-14-106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rips J, Meyer-Schuman R, Breuer O, Tsabari R, Shaag A, Revel-Vilk S, Reif S, Elpeleg O, Antonellis A, Harel T (2018) MARS variant associated with both recessive interstitial lung and liver disease and dominant Charcot-Marie-Tooth disease. Eur J Med Genet 61(10):616–620. https://doi.org/10.1016/j.ejmg.2018.04.005

    Article  PubMed  PubMed Central  Google Scholar 

  29. Novarino G, Fenstermaker AG, Zaki MS, Hofree M, Silhavy JL, Heiberg AD, Abdellateef M, Rosti B, Scott E, Mansour L, Masri A, Kayserili H, Al-Aama JY, Abdel-Salam GMH, Karminejad A, Kara M, Kara B, Bozorgmehri B, Ben-Omran T, Mojahedi F, El Din Mahmoud IG, Bouslam N, Bouhouche A, Benomar A, Hanein S, Raymond L, Forlani S, Mascaro M, Selim L, Shehata N, Al-Allawi N, Bindu PS, Azam M, Gunel M, Caglayan A, Bilguvar K, Tolun A, Issa MY, Schroth J, Spencer EG, Rosti RO, Akizu N, Vaux KK, Johansen A, Koh AA, Megahed H, Durr A, Brice A, Stevanin G, Gabriel SB, Ideker T, Gleeson JG (2014) Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science 343(6170):506–511. https://doi.org/10.1126/science.1247363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Götz A, Tyynismaa H, Euro L, Ellonen P, Hyötyläinen T, Ojala T, Hämäläinen RH, Tommiska J, Raivio T, Oresic M, Karikoski R, Tammela O, Simola KO, Paetau A, Tyni T, Suomalainen A (2011) Exome sequencing identifies mitochondrial alanyl-tRNA synthetase mutations in infantile mitochondrial cardiomyopathy. Am J Hum Genet 88(5):635–642. https://doi.org/10.1016/j.ajhg.2011.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Taylor RW, Pyle A, Griffin H, Blakely EL, Duff J, He L, Smertenko T, Alston CL, Neeve VC, Best A, Yarham JW, Kirschner J, Schara U, Talim B, Topaloglu H, Baric I, Holinski-Feder E, Abicht A, Czermin B, Kleinle S, Morris AA, Vassallo G, Gorman GS, Ramesh V, Turnbull DM, Santibanez-Koref M, McFarland R, Horvath R, Chinnery PF (2014) Use of whole-exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies. JAMA 312(1):68–77. https://doi.org/10.1001/jama.2014.7184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dallabona C, Diodato D, Kevelam SH, Haack TB, Wong LJ, Salomons GS, Baruffini E, Melchionda L, Mariotti C, Strom TM, Meitinger T, Prokisch H, Chapman K, Colley A, Rocha H, Ounap K, Schiffmann R, Salsano E, Savoiardo M, Hamilton EM, Abbink TE, Wolf NI, Ferrero I, Lamperti C, Zeviani M, Vanderver A, Ghezzi D, van der Knaap MS (2014) Novel (ovario) leukodystrophy related to AARS2 mutations. Neurology 82(23):2063–2071. https://doi.org/10.1212/WNL.0000000000000497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Taglia I, Di Donato I, Bianchi S, Cerase A, Monti L, Marconi R, Orrico A, Rufa A, Federico A, Dotti MT (2018) AARS2-related ovarioleukodystrophy: clinical and neuroimaging features of three new cases. Acta Neurol Scand 138(4):278–283. https://doi.org/10.1111/ane.12954

    Article  CAS  PubMed  Google Scholar 

  34. Srivastava S, Butala A, Mahida S, Richter J, Mu W, Poretti A, Vernon H, VanGerpen J, Atwal PS, Middlebrooks EH, Zee DS, Naidu S (2019) Expansion of the clinical spectrum associated with AARS2-related disorders. Am J Med Genet A 179(8):1556–1564. https://doi.org/10.1002/ajmg.a.61188

    Article  PubMed  Google Scholar 

  35. Kuo ME, Antonellis A, Shakkottai VG (2020) Alanyl-tRNA synthetase 2 (AARS2)-related ataxia without leukoencephalopathy. Cerebellum 19(1):154–160. https://doi.org/10.1007/s12311-019-01080-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sommerville EW, Zhou XL, Oláhová M, Jenkins J, Euro L, Konovalova S, Hilander T, Pyle A, He L, Habeebu S, Saunders C, Kelsey A, Morris AAM, McFarland R, Suomalainen A, Gorman GS, Wang ED, Thiffault I, Tyynismaa H, Taylor RW (2019) Instability of the mitochondrial alanyl-tRNA synthetase underlies fatal infantile-onset cardiomyopathy. Hum Mol Genet 28(2):258–268. https://doi.org/10.1093/hmg/ddy294

    Article  PubMed  Google Scholar 

  37. Peragallo JH, Keller S, van der Knaap MS, Soares BP, Shankar SP (2018) Retinopathy and optic atrophy: expanding the phenotypic spectrum of pathogenic variants in the AARS2 gene. Ophthalmic Genet 39(1):99–102. https://doi.org/10.1080/13816810.2017.1350723

    Article  CAS  PubMed  Google Scholar 

  38. Kiraly-Borri C, Jevon G, Ji W, Jeffries L, Ricciardi JL, Konstantino M, Ackerman KG, Lakhani SA (2019) Siblings with lethal primary pulmonary hypoplasia and compound heterozygous variants in the AARS2 gene: further delineation of the phenotypic spectrum. Cold Spring Harb Mol Case Stud 5(3):a003699. https://doi.org/10.1101/mcs.a003699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sofou K, Kollberg G, Holmström M, Dávila M, Darin N, Gustafsson CM, Holme E, Oldfors A, Tulinius M, Asin-Cayuela J (2015) Whole exome sequencing reveals mutations in NARS2 and PARS2, encoding the mitochondrial asparaginyl-tRNA synthetase and prolyl-tRNA synthetase, in patients with Alpers syndrome. Mol Genet Genomic Med 3(1):59–68. https://doi.org/10.1002/mgg3.115

    Article  CAS  PubMed  Google Scholar 

  40. Pronicka E, Piekutowska-Abramczuk D, Ciara E, Trubicka J, Rokicki D, Karkucińska-Więckowska A, Pajdowska M, Jurkiewicz E, Halat P, Kosińska J, Pollak A, Rydzanicz M, Stawinski P, Pronicki M, Krajewska-Walasek M, Płoski R (2016) New perspective in diagnostics of mitochondrial disorders: two years’ experience with whole-exome sequencing at a national paediatric centre. J Transl Med 14(1):174. https://doi.org/10.1186/s12967-016-0930-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ciara E, Rokicki D, Lazniewski M, Mierzewska H, Jurkiewicz E, Bekiesińska-Figatowska M, Piekutowska-Abramczuk D, Iwanicka-Pronicka K, Szymańska E, Stawiński P, Kosińska J, Pollak A, Pronicki M, Plewczyński D, Płoski R, Pronicka E (2018) Clinical and molecular characteristics of newly reported mitochondrial disease entity caused by biallelic PARS2 mutations. J Hum Genet 63(4):473–485. https://doi.org/10.1038/s10038-017-0401-z

    Article  CAS  PubMed  Google Scholar 

  42. Mizuguchi T, Nakashima M, Kato M, Yamada K, Okanishi T, Ekhilevitch N, Mandel H, Eran A, Toyono M, Sawaishi Y, Motoi H, Shiina M, Ogata K, Miyatake S, Miyake N, Saitsu H, Matsumoto N (2017) PARS2 and NARS2 mutations in infantile-onset neurodegenerative disorder. J Hum Genet 62(5):525–529. https://doi.org/10.1038/jhg.2016.163

    Article  CAS  PubMed  Google Scholar 

  43. Yin X, Tang B, Mao X, Peng J, Zeng S, Wang Y, Jiang H, Li N (2018) The genotypic and phenotypic spectrum of PARS2-related infantile-onset encephalopathy. J Hum Genet 63(9):971–980. https://doi.org/10.1038/s10038-018-0478-z

    Article  CAS  PubMed  Google Scholar 

  44. Al Balushi A, Matviychuk D, Jobling R, Salomons GS, Blaser S, Mercimek-Andrews S (2019) Phenotypes and genotypes of mitochondrial aminoacyl-tRNA synthetase deficiencies from a single neurometabolic clinic. JIMD Rep 51(1):3–10. https://doi.org/10.1002/jmd2.12079

    Article  PubMed  PubMed Central  Google Scholar 

  45. Meyer-Schuman R, Antonellis A (2017) Emerging mechanisms of aminoacyl-tRNA synthetase mutations in recessive and dominant human disease. Hum Mol Genet 26(R2):R114–R127. https://doi.org/10.1093/hmg/ddx231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Manami Iso for Sanger sequencing of AARS2 and PARS2.

Funding

This study was supported in part by grants of the Initiative on Rare and Undiagnosed Diseases in Pediatrics (IRUD-P) (16ek0109166h0002) (TK) from the Japanese Agency for Medical Research and Development (AMED), JSPS KAKENHI Grant Number JP18K07863 (TK), and JSPS KAKENHI Grant Number JP16K07211 (FM) from Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuhiko Okamoto.

Ethics declarations

Ethical approval and informed consent

All procedures were followed in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and Helsinki Declaration of 1975, as revised in 2000. The study was approved by the institutional review board of Osaka Women’s and Children’s Hospital, and appropriate written informed consent was obtained.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okamoto, N., Miya, F., Tsunoda, T. et al. Four pedigrees with aminoacyl-tRNA synthetase abnormalities. Neurol Sci 43, 2765–2774 (2022). https://doi.org/10.1007/s10072-021-05626-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-021-05626-z

Keywords

Navigation