Skip to main content
Log in

Discrimination of group numerousness under predation risk in anuran tadpoles

  • Original Paper
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

For social animals, group size discrimination may play a major role in setting the trade-off between the costs and benefits of membership. Several anuran tadpoles show different degrees of social aggregation when exposed to the risk of predation. Despite the importance of aggregative behaviour as an anti-predatory response, the mechanism underlying tadpole choice of the group to join to has not been sufficiently investigated. To establish whether visual cues provide sufficient information to enable tadpoles to choose between aggregations differing in size, we explored the abilities of the larvae of two anuran species (green toad Bufotes balearicus and edible frog Pelophylax esculentus) to discriminate among four numerical combinations of conspecific tadpoles (1 vs. 4, 3 vs. 4, 4 vs. 6 and 4 vs. 8), either in the presence or absence of predatory cues. Our results suggest that in anuran larvae the capacity to discriminate between quantities is limited to small numbers (1 vs. 4 for B. balearicus and both 1 vs. 4 and 3 vs. 4 for P. esculentus). Predator-exposed toad tadpoles stayed longer close to the larger group, supporting aggregation as a major anti-predator behaviour in bufonids, while frog tadpoles showed a preference for the smaller groups, though in predator-free trials only, probably associated with lower intra-specific competition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrillo C, Dadda M, Serena G, Bisazza A (2008) Do fish count? Spontaneous discrimination of quantity in female mosquitofish. Anim Cogn 11:495–503. https://doi.org/10.1007/s10071-008-0140-9

    Article  PubMed  Google Scholar 

  • Agrillo C, Piffer L, Bisazza A (2011) Number versus continuous quantity in numerosity judgments by fish. Cognition 119:281–287. https://doi.org/10.1016/j.cognition.2010.10.022

    Article  PubMed  Google Scholar 

  • Agrillo C, Piffer L, Bisazza A, Butterworth B (2012) Evidence for two numerical systems that are similar in humans and guppies. PLoS One 7(2):e31923. https://doi.org/10.1371/journal.pone.0031923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett AM, Pereira D, Murray DL (2013) Investment into defensive traits by anuran prey (Lithobates pipiens) is mediated by the starvation-predation risk trade-off. PLoS One 8(12):e82344

    Article  Google Scholar 

  • Benson-Amram S, Heinen VK, Dryer SL, Holekamp KE (2011) Numerical assessment and individual call discrimination by wild spotted hyaenas, Crocuta crocuta. Anim Behav 82:743–752. https://doi.org/10.1016/j.anbehav.2011.07.004

    Article  Google Scholar 

  • Bertamini M, Guest M, Vallortigara G, Rugani R, Regolin L (2018) The effect of clustering on perceived quantity in humans (Homo sapiens) and in chicks (Gallus gallus). J Comp Psychol 132:280–293

    Article  Google Scholar 

  • Bisazza A, De Santi A, Bonso S, Sovrano VA (2002) Frogs and toads in front of a mirror: lateralisation of response to social stimuli in tadpoles of five anuran species. Behav Brain Res 134:417–424

    Article  Google Scholar 

  • Bisazza A, Piffer L, Serena G, Agrillo C (2010) Ontogeny of numerical abilities in fish. PLoS One 5(11):e15516

    Article  Google Scholar 

  • Blaustein AR, O’Hara RK (1982) Kin recognition cues in Rana cascadae tadpoles. Behav Neural Biol 36:77–87

    Article  CAS  Google Scholar 

  • Blaustein AR, O’Hara RK (1986) Kin recognition in tadpoles. Sci Am 254:108–116

    Article  Google Scholar 

  • Blaustein AR, Waldman B (1992) Kin recognition in anuran amphibians. Anim Behav 44:207–221

    Article  Google Scholar 

  • Blaustein AR, Walls SC (1995) Aggregation and kin recognition. In: Heatwole H, Sullivan BK (eds) Amphibian biology, Social behaviour, vol 2. Surrey Beatty and Sons, New South Wales, pp 568–602

    Google Scholar 

  • Bogale BA, Aoyama M, Sugita S (2014) Spontaneous discrimination of food quantities in the jungle crow, Corvus macrorhynchos. Anim Behav 94:73e78

    Article  Google Scholar 

  • Brown RM, Taylor DH (1995) Performance and maneuvering behavior through larval ontogeny of the wood frog, Rana sylvatica. Copeia 1:1–7

    Article  Google Scholar 

  • Buckingham JN, Wong BBM, Rosenthal GG (2007) Shoaling decisions in female swordtails: how do fish gauge group size? Behaviour 144:1333–1346

    Article  Google Scholar 

  • Carazo P, Font E, Forteza-Behrendt E, Desfilis E (2009) Quantity discrimination in Tenebrio molitor: evidence of numerosity discrimination in an invertebrate? Anim Cogn 12:463–470. https://doi.org/10.1007/s10071-008-0207-7

    Article  CAS  PubMed  Google Scholar 

  • Chivers DP, Smith RJF (1998) Chemical alarm signalling in aquatic predator/prey interactions: a review and prospectus. Écoscience 5:338–352

    Article  Google Scholar 

  • Cresswell W (1994) Flocking is an effective anti-predation strategy in redshanks, Tringa totanus. Anim Behav 47:433–442

    Article  Google Scholar 

  • Cresswell W, Quinn JL (2004) Faced with a choice, sparrow hawks more often attack the more vulnerable prey group. Oikos 104:71–76

    Article  Google Scholar 

  • Cresswell W, Hilton GM, Ruxton GD (2000) Evidence for a rule governing the avoidance of superfluous escape flights. Proc R Soc Lond B 267:733–737

    Article  CAS  Google Scholar 

  • Cross FR, Jackson RR (2017) Representation of different exact numbers of prey by a spider-eating predator. Interf Focus 7(3):20160035

    Article  Google Scholar 

  • Dacke M, Srinivasan MV (2008) Evidence for counting in insects. Anim Cogn 11:683–689. https://doi.org/10.1007/s10071-008-0159-y

    Article  PubMed  Google Scholar 

  • Feigenson L, Carey S, Hauser M (2002) The representations underlying infants’ choice of more: object files versus analog magnitudes. Psychol Sci 13(2):150–156

    Article  Google Scholar 

  • Feigenson L, Dehaene S, Spelke E (2004) Core systems of number. Trends Cogn Sci 8(7):307–314

    Article  Google Scholar 

  • Forsatkar MN, Nematollahi MA, Bisazza A (2016) Quantity discrimination in parental fish: female convict cichlid discriminate fry shoals of different sizes. Anim Cogn 19:959–964

    Article  Google Scholar 

  • Forsman JT, Hjernquist MB, Taipale J, Gustafsson L (2008) Competitor density cues for habitat quality facilitating habitat selection and investment decisions. Behav Ecol 19:539–545. https://doi.org/10.1093/beheco/arn005

    Article  Google Scholar 

  • Foster MS, McDiarmid RW (1982) Study of aggregative behavior of Rhinophrynus dorsalis tadpoles: design and analysis. Herpetologica 38:395–404

    Google Scholar 

  • Gallistel CR, Gelman R (2000) Non-verbal numerical cognition: from reals to integers. Trends Cogn Sci 4(2):59–65

    Article  CAS  Google Scholar 

  • Gazzola A, Van Buskirk J (2015) Isocline analysis of competition predicts stable coexistence of two amphibians. Oecologia 178:153–159. https://doi.org/10.1007/s00442-015-3273-y

    Article  PubMed  Google Scholar 

  • Gazzola A, Sacchi R, Ghitti M, Balestrieri A (2018a) The effect of thinning and cue: density ratio on risk perception by Rana dalmatina tadpoles. Hydrobiologia 813:75–83

    Article  Google Scholar 

  • Gazzola A, Vallortigara G, Pellitteri-Rosa D (2018b) Continuous and discrete quantity discrimination in tortoises. Biol Lett 14:20180649. https://doi.org/10.1098/rsbl.2018.0649

    Article  PubMed  Google Scholar 

  • Glos J, Erdmann G, Dausmann KH, Linsenmair KE (2007) A comparative study of predator-induced social aggregation of tadpoles in two anuran species from western Madagascar. Herpetol J 17:261–268

    Google Scholar 

  • Gómez-Laplaza LM, Gerlai R (2011) Spontaneous discrimination of small quantities: shoaling preferences in angelfish (Pterophyllum scalare). Anim Cogn 14:565–574. https://doi.org/10.1007/s10071-011-0392-7

    Article  PubMed  Google Scholar 

  • Gómez-Laplaza LM, Gerlai R (2013) Quantification abilities in angelfish (Pterophyllum scalare): the influence of continuous variables. Anim Cogn 16:373–383

    Article  Google Scholar 

  • Griffiths RA, Foster JP (1998) The effect of social interactions on tadpole activity and growth in the British anuran amphibians (Bufo bufo, B. calamita, and Rana temporaria). J Zool (London) 245:431–437

    Article  Google Scholar 

  • Hettyey A, Zoltán T, Thonhauser EK, Frommen JG, Penn DJ, Van Buskirk J (2015) The relative importance of prey-borne and predator-borne chemical cues for inducible antipredator responses in tadpoles. Oecologia 79:699–710

    Article  Google Scholar 

  • Hoare DJ, Couzin ID, Godin JGJ, Krause J (2004) Context-dependent group size choice in fish. Anim Behav 67:155–164. https://doi.org/10.1016/j.anbehav.2003.04.004

    Article  Google Scholar 

  • Howard S, Avarguès-Weber A, Garcia JE, Greentree AD, Dyer AG (2018) Numerical ordering of zero in honeybees. Science 360:1124–1126. https://doi.org/10.1126/science.aar4975

    Article  CAS  PubMed  Google Scholar 

  • Irie-Sugimoto N, Kobayashi T, Sato T, Hasegawa T (2009) Relative quantity judgment by Asian elephants (Elephas maximus). Anim Cogn 12(1):193–199

    Article  Google Scholar 

  • Kishida O, Nishimura K (2005) Multiple inducible defences against multiple predators in the anuran tadpoles, Rana pirica. Evol Ecol Res 7:619–631

    Google Scholar 

  • Kloke JD, McKean JW (2012) Rfit: rank-based estimation for linear models. The R Journal 4(2):57–64

    Article  Google Scholar 

  • Krause J, Ruxton GD (2002) Living in groups. Oxford series in ecology and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Krause J, Ruxton GD, Rubenstein D (1998) Is there always an influence of shoal size on predator hunting success? J Fish Biol 52:494–501

    Article  Google Scholar 

  • Kruske P, Uller C, Dicke U (2010) Quantity discrimination in salamanders. J Exp Biol 213:1822–1828

    Article  Google Scholar 

  • Leu ST, Whiting MJ, Mahony MJ (2013) Making friends: social attraction in larval green and golden bell frogs, Litoria aurea. PLoS One 8(2):e56460. https://doi.org/10.1371/journal.pone.0056460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Canad J Zool 68:619–640

    Article  Google Scholar 

  • Lucon-Xiccato T, Miletto Petrazzini ME, Agrillo C, Bisazza A (2015) Guppies discriminate between two quantities of food items but prioritize item size over total amount. Anim Behav 107:183e191

    Article  Google Scholar 

  • Lucon-Xiccato T, Gatto E, Bisazza A (2018) Quantity discrimination by treefrogs. Anim Behav 139:61–69. https://doi.org/10.1016/j.anbehav.2018.03.005

    Article  Google Scholar 

  • Lyon BE (2003) Egg recognition and counting reduce costs of avian conspecific brood parasitism. Nature 422:495–499

    Article  CAS  Google Scholar 

  • MacArthur RH, Pianka ER (1966) On optimal use of a patchy environment. Am Nat 100:603–609. https://doi.org/10.1086/282454

    Article  Google Scholar 

  • Magurran AE, Pitcher TJ (1987) Provenance, shoal size and the sociobiology of predator-evasion behaviour in minnow shoals. Proc R Soc Lond B 229:439–465

    Article  Google Scholar 

  • McClure KV, Mora JW, Smith GR (2009) Effects of light and group size on the activity of wood frog tadpoles Rana sylvatica. Acta Herp 4(1):103–107

    Google Scholar 

  • Miletto Petrazzini ME, Fraccaroli I, Gariboldi F, Agrillo C, Bisazza A, Bertolucci C, Foa A (2017) Quantitative abilities in a reptile (Podarcis sicula). Biol Lett 13:20160899. https://doi.org/10.1098/rsbl.2016.089915

    Article  PubMed  PubMed Central  Google Scholar 

  • Miletto Petrazzini ME, Bertolucci C, Foa A (2018) Quantity discrimination in trained lizards (Podarcis sicula). Front Psychol 9:274. https://doi.org/10.3389/fpsyg.2018.00274

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelson XJ, Jackson RR (2012) The role of numerical competence in a specialized predatory strategy of an araneophagic spider. Anim Cogn 15:699–710. https://doi.org/10.1007/s10071-012-0498-6

    Article  PubMed  Google Scholar 

  • Nordell SE (1998) The response of female guppies, Poecilia reticulata, to chemical stimuli from injured conspecifics. Envir Biol Fishes 51:331–338

    Article  Google Scholar 

  • O’Hara RK, Blaustein AR (1988) Hyla regilla and Rana pretiosa tadpoles fail to display kin recognition behaviour. Anim Behav 36:946–948

    Article  Google Scholar 

  • Pepperberg IM (2006) Grey parrot numerical competence: a review. Anim Cogn 9:377–391. https://doi.org/10.1007/s10071-006-0034-7

    Article  PubMed  Google Scholar 

  • Pitcher TJ, Parrish JK (1993) Functions of shoaling behaviour in teleosts. In: Pitcher TJ (ed) The behavior of teleost fishes, 2nd edn. Chapman and Hall, New York, pp 363–439

    Chapter  Google Scholar 

  • Potrich D, Sovrano VA, Stancher G, Vallortigara G (2015) Quantity discrimination by zebrafish (Danio rerio). J Comp Psychol 129:388–393

    Article  Google Scholar 

  • Relyea RA (2001) Morphological and behavioral plasticity of larval anurans in response to different predators. Ecology 82:523–540

    Article  Google Scholar 

  • Rugani R, Regolin L, Vallortigara G (2008) Discrimination of small numerosities in young chicks. J Exp Psychol Anim Behav Proc 34:388–399

    Article  Google Scholar 

  • Rugani R, Fontanari L, Simoni E, Regolin L, Vallortigara G (2009) Arithmetic in newborn chicks. Proc R Soc Lond B 276:2451–2460

    Article  Google Scholar 

  • Rugani R, Regolin L, Vallortigara G (2010) Imprinted numbers: newborn chicks’ sensitivity to number vs. continuous extent of objects they have been reared with. Dev Sci 13:790–797

    Article  Google Scholar 

  • Rugani R, Regolin L, Vallortigara G (2011) Summation of large numerousness by newborn chicks. Front Psychol 2:179. https://doi.org/10.3389/fpsyg.2011.00179

    Article  PubMed  PubMed Central  Google Scholar 

  • Rugani R, Cavazzana A, Vallortigara G, Regolin L (2013a) One, two, three, four, or is there something more? Numerical discrimination in day-old domestic chicks. Anim Cogn 16:557–564

    Article  Google Scholar 

  • Rugani R, Vallortigara G, Regolin L (2013b) Numerical abstraction in young domestic chicks (Gallus gallus). PLoS One 8(6):e65262. https://doi.org/10.1371/journal.pone.0065262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rugani R, Vallortigara G, Regolin G (2014) From small to large: numerical discrimination by young domestic chicks (Gallus gallus). J Comp Psychol 128:163–171

    Article  Google Scholar 

  • Rugani R, McCrink K, de Hevia M-D, Vallortigara G, Regolin L (2016) Ratio abstraction over discrete magnitudes by newly hatched domestic chicks (Gallus gallus). Sci Rep 6:30114. https://doi.org/10.1038/srep30114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semlitsch RD (1990) Effects of body size, sibship, and tail injury on the susceptibility of tadpoles to dragonfly predation. Can J Zool 68:1027–1030

    Article  Google Scholar 

  • Spieler M, Linsenmair KE (1999) Aggregation behaviour of Bufo maculatus tadpoles as an antipredator mechanism. Ethology 105:665–686. https://doi.org/10.1046/j.1439-0310.1999.00446.x

    Article  Google Scholar 

  • Stancher G, Sovrano VA, Potrich D, Vallortigara G (2013) Discrimination of small quantities by fish (redtail splitfin, Xenotoca eiseni). Anim Cogn 16:307–312

    Article  Google Scholar 

  • Stancher G, Rugani R, Regolin L, Vallortigara G (2015) Numerical discrimination by frogs (Bombina orientalis). Anim Cogn 18:219–229. https://doi.org/10.1007/s10071-014-0791-7

    Article  CAS  PubMed  Google Scholar 

  • Stav G, Kotler BP, Blaustein L (2007) Direct and indirect effects of dragonfly (Anax imperator) nymphs on green toad (Bufo viridis) tadpoles. Hydrobiologia 579:85–93

    Article  Google Scholar 

  • Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press, Princeton

    Google Scholar 

  • Trick LM, Pylyshyn ZW (1994) Why are small and large numbers enumerated differently? A limited-capacity preattentive stage in vision. Psychol Rev 101:80–102

    Article  CAS  Google Scholar 

  • Uller C, Carey S, Huntley-Fenner G, Klatt L (1999) What representations might underlie infant numerical knowledge. Cogn Dev 14:1–36

    Article  Google Scholar 

  • Uller C, Jaeger R, Guidry G, Martin C (2003) Salamanders (Plethodon cinereus) go for more: rudiments of number in an amphibian. Anim Cogn 6:105–112. https://doi.org/10.1007/s10071-003-0167-x

    Article  PubMed  Google Scholar 

  • Vallortigara G (2014) Foundations of number and space representations in non-human species. In: Geary DC, Bearch DB, Mann Koepke K (eds) Evolutionary origins and early development of number processing. Elsevier, New York, pp 35–66

    Google Scholar 

  • Vallortigara G (2017) An animal’s sense of number. In: Adams JW, Barmby P, Alex M (eds) The nature and development of mathematics. Taylor and Francis, Oxon, pp 43–65

    Google Scholar 

  • Vallortigara G (2018) Comparative cognition of number and space: the case of geometry and of the mental number line. Philos Trans R Soc B 373:20170120. https://doi.org/10.1098/rstb.2015.0615

    Article  Google Scholar 

  • Van Buskirk J (2001) Specific induced responses to different predator species in anuran larvae. J Evol Biol 14:482–489

    Article  Google Scholar 

  • Van Buskirk J, Arioli M (2002) Dosage response of an induced defense: how sensitive are tadpoles to predation risk? Ecology 83:1580–1585

    Article  Google Scholar 

  • Van Buskirk J, Ferrari M, Kueng D, Näpflin K, Ritter N (2011) Prey risk assessment depends on conspecific density. Oikos 120:1235–1239

    Article  Google Scholar 

  • Van Buskirk J, Krugel A, Kunz J, Miss F, Stamm A (2014) The rate of degradation of chemical cues indicating predation risk: an experiment and review. Ethology 120:942–949

    Article  Google Scholar 

  • vanMarle K, Wynn K (2011) Tracking and quantifying objects and non-cohesive substances. Dev Sci 14(3):502–515

    Article  Google Scholar 

  • Vonk J, Beran MJ (2012) Bears “count” too: quantity estimation and comparison in black bears, Ursus americanus. Anim Behav 84:231–238. https://doi.org/10.1016/j.anbehav.2012.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  • Vonk J, Torgerson-White L, McGuire M, Thueme M, Thomas J, Beran MJ (2014) Quantity estimation and comparison in western lowland gorillas (Gorilla gorilla gorilla). Anim Cogn 17:755–765. https://doi.org/10.1007/s10071-013-0707-y

    Article  PubMed  Google Scholar 

  • Waldman B (1991) Kin recognition in amphibians. In: Hepper PG (ed) Kin recognition. Cambridge University Press, Cambridge, pp 162–219

    Chapter  Google Scholar 

  • Wassersug RJ, Hessler CM (1971) Tadpole behaviour: aggregation in larval Xenopus laevis. Anim Behav 19:386–389

    Article  CAS  Google Scholar 

  • Watt PJ, Nottingham SF, Young S (1997) Toad tadpole aggregation behaviour: evidence for a predator avoidance function. Anim Behav 54:865–872

    Article  CAS  Google Scholar 

  • Wells KD (2007) The ecology and behavior of amphibians. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Xiong W, Yi L-C, Tang Z, Zhao X, Fu S-J (2018) Quantity discrimination in fish species: fish use non-numerical continuous quantity traits to select shoals. Anim Cogn. https://doi.org/10.1007/s10071-018-1214-y

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Francesco Bracco and to the Botanic Garden of Pavia for providing the laboratory for behavioural experiments. In particular, we are grateful to Prof. Solveig Tosi for her enthusiastic and sincere care which allowed us to perform the experiments in a supporting environment. We also thank Paolo Cauzzi for his useful suggestions. A heartfelt thanks to Leonardo and Tommaso Pellitteri-Rosa for their nice and funny help during tadpole field collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Gazzola.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors. The permits to perform this study were obtained from the Italian Ministry of Environment, Land and Sea (0006075–23/03/2018—PNM).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balestrieri, A., Gazzola, A., Pellitteri-Rosa, D. et al. Discrimination of group numerousness under predation risk in anuran tadpoles. Anim Cogn 22, 223–230 (2019). https://doi.org/10.1007/s10071-019-01238-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-019-01238-5

Keywords

Navigation