Skip to main content
Log in

Decision-making and associative color learning in harnessed bumblebees (Bombus impatiens)

  • Original Paper
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

In honeybees, the conditioning of the proboscis extension response (PER) has provided a powerful tool to explore the mechanisms underlying olfactory learning and memory. Unfortunately, PER conditioning does not work well for visual stimuli in intact honeybees, and performance is improved only after antennal amputation, thus limiting the analysis of visual learning and multimodal integration. Here, we study visual learning using the PER protocol in harnessed bumblebees, which exhibit high levels of odor learning under restrained conditions. We trained bumblebees in a differential task in which two colors differed in their rewarding values. We recorded learning performance as well as response latency and accuracy. Bumblebees rapidly learned the task and discriminated the colors within the first two trials. However, performance varied between combinations of colors and was higher when blue or violet was associated with a high reward. Overall, accuracy and speed were negatively associated, but both components increased during acquisition. We conclude that PER conditioning is a good tool to study visual learning, using Bombus impatiens as a model, opening new possibilities to analyze the proximate mechanisms of visual learning and memory, as well as the process of multimodal integration and decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anfora G, Rigosi E, Frasnelli E, Vincenza R, Trona F, Vallortigara G (2011) Lateralization in the invertebrate brain: left-right asymmetry of olfaction in bumblebee, Bombus terrestris. PLoS One 6:e18903

    Article  PubMed  CAS  Google Scholar 

  • Avarguès-Weber A, Deisig N, Giurfa M (2011) Visual cognition in social insects. Annu Rev Entomol 56:423–443

    Article  PubMed  Google Scholar 

  • Bitterman ME (1996) Comparative analysis of learning in honeybees. Anim Learn Behav 24:123–141

    Article  Google Scholar 

  • Bitterman ME, Menzel R, Fietz A, Schäfer S (1983) Classical conditioning of proboscis extension in honeybees (Apis mellifera). J Comp Psychol 97:107–119

    Article  PubMed  CAS  Google Scholar 

  • Chittka L, Thomson JD (1997) Sensori-motor learning and its relevance for task specialization in bumble bees. Behav Ecol Sociobiol 41:385–398

    Article  Google Scholar 

  • Chittka L, Dyer AG, Bock F, Dornhaus A (2003) Bees trade off foraging speed for accuracy. Nature 424:388

    Article  PubMed  CAS  Google Scholar 

  • Chittka L, Skorupski P, Raine NE (2009) Speed–accuracy tradeoffs in animal decision making. Trends Ecol Evol 24:400–407

    Article  PubMed  Google Scholar 

  • Church DL, Plowright CMS (2006) Spatial encoding by bumblebees (Bombus impatiens) of a reward within an artificial flower array. Anim Cogn 9:131–140

    Article  PubMed  Google Scholar 

  • Cnaani J, Thomson JD, Papaj DR (2006) Flower choice and learning in foraging bumblebees: effects of variation in nectar volume and concentration. Ethology 112:278–285

    Article  Google Scholar 

  • de Brito-Sanchez MG, Chen Ch, Li J, Liu F, Gauthier M, Giurfa M (2008) Behavioral studies on tarsal gustation in honeybees: sucrose responsiveness and sucrose-mediated olfactory conditioning. J Comp Physiol A 194:861–869

    Article  CAS  Google Scholar 

  • Dukas R (2008) Evolutionary biology of insect learning. Annu Rev Entomol 53:145–160

    Article  PubMed  CAS  Google Scholar 

  • Dukas R, Waser NM (1994) Categorization of food types enhances foraging performance of bumblebees. Anim Behav 48:1001–1006

    Article  Google Scholar 

  • Faber T, Joerges J, Menzel R (1999) Associative learning modifies neural representations of odors in the insect brain. Nat Neurosci 2:74–78

    Article  PubMed  CAS  Google Scholar 

  • Friedrich RW (2006) Mechanisms of odor discrimination: neurophysiological and behavioral approaches. Trends Neurosci 29:40–47

    Article  PubMed  CAS  Google Scholar 

  • Gil M, Menzel R, De Marco RJ (2009) Side-specific reward memories in honeybees. Learn Mem 16:426–432

    Article  PubMed  Google Scholar 

  • Giurfa M (2003) Cognitive neuroethology: dissecting non-elemental learning in a honeybee brain. Curr Opin Neurobiol 13:726–735

    Article  PubMed  CAS  Google Scholar 

  • Giurfa M (2007) Behavioral and neural analysis of associative learning in the honeybee: a taste of the magic well. J Comp Physiol A 193:801–824

    Article  Google Scholar 

  • Giurfa M, Malun D (2004) Associative mechanosensory conditioning of the proboscis extension reflex in honeybees. Learn Mem 11:294–302

    Article  PubMed  Google Scholar 

  • Giurfa M, Sandoz JC (2012) Invertebrate learning and memory: fifty years of olfactory conditioning of the proboscis extension response in honeybees. Learn Mem 19:54–66

    Article  PubMed  Google Scholar 

  • Gold JI, Shadlen MN (2007) The neural basis of decision making. Annu Rev Neurosci 30:535–574

    Article  PubMed  CAS  Google Scholar 

  • Gumbert A (2000) Color choices by bumble bees (Bombus terrestris): innate preferences and generalization after learning. Behav Ecol Sociobiol 48:36–43

    Article  Google Scholar 

  • Hammer M (1993) An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees. Nature 366:59–63

    Article  Google Scholar 

  • Hammer M, Menzel R (1995) Learning and memory in the honeybee. J Neurosci 15:1617–1630

    PubMed  CAS  Google Scholar 

  • Heinrich B, Mudge PR, Deringis PG (1977) Laboratory analysis of flower constancy in foraging bumblebees: Bombus ternarius and B. terricola. Behav Ecol Sociobiol 2:247–265

    Article  Google Scholar 

  • Hori S, Takeuchi H, Arikawa K, Kinoshita M, Ichikawa N, Sasaki M, Kubo T (2006) Associative visual learning, color discrimination, and chromatic adaptation in the harnessed honeybee Apis mellifera L. J Comp Physiol A 192:691–700

    Article  Google Scholar 

  • Hori S, Takeuchi H, Kubo T (2007) Associative learning and discrimination of motion cues in the harnessed honeybee Apis mellifera L. J Comp Physiol A 193:825–833

    Article  Google Scholar 

  • Horridge A (2009) What does the honeybee see? And How do we know?. Australian National University Press, Canberra

    Google Scholar 

  • Internicola AI, Harder LD (2011) Bumble-bee learning selects for both early and long flowering in food-deceptive plants. Proc R Soc B. doi:10.1098/rspb.2011.1849

  • Kamil AC, Roitblat HL (1985) The ecology of foraging behavior: implications for animal learning and memory. Annu Rev Psychol 36:141–169

    Article  PubMed  CAS  Google Scholar 

  • Keasar T, Motro U, Shur Y, Shmida A (1996) Overnight memory retention of foraging skills by bumblebees is imperfect. Anim Behav 52:95–104

    Article  Google Scholar 

  • Komischke B, Sandoz JC, Lachnit H, Giurfa M (2003) Non-elemental processing in olfactory discrimination tasks needs bilateral input in honeybees. Behav Brain Res 145:135–143

    Article  PubMed  Google Scholar 

  • Krebs JR, Inman AJ (1992) Learning and foraging: individuals, groups, and populations. Am Nat 140:S63–S84

    Article  PubMed  Google Scholar 

  • Kulahci IG, Dornhaus A, Papaj DR (2008) Multimodal signals enhance decision-making in foraging bumblebees. Proc R Soc B 275:797–802

    Article  PubMed  Google Scholar 

  • Laverti TM (1994) Bumble bee learning and flower morphology. Anim Behav 47:531–545

    Article  Google Scholar 

  • Leonard AS, Dornhaus A, Papaj D (2011) Flowers help bees cope with uncertainty: signal detection and the function of floral complexity. J Exp Biol 214:113–121

    Article  PubMed  Google Scholar 

  • Lubbock J (1881) Ants, bees and wasps. Kegan Paul, London

    Google Scholar 

  • Mackintosh NJ (1983) Conditioning and associative learning. Oxford University Press, Oxford

    Google Scholar 

  • Mauelshagen J (1993) Neural correlates of olfactory learning paradigms in an identified neuron in the honeybee brain. J Neurophysiol 69:609–625

    PubMed  CAS  Google Scholar 

  • Menzel R (1968) Das Gedächtnis der Honigbiene für Spektralfarben. I. Kurzzeitiges und langzeitiges Behalten. Z Vergl Physiol 60:82–102

    Article  Google Scholar 

  • Menzel R (1985) Learning in honeybees in an ecological and behavioral context. In: Hölldobler B, Lindauer M (eds) Experimental Behavioral Ecology. Gustav Fischer Verlag, Stuttgart, pp 55–74

  • Menzel R, Müller U (1996) Learning and memory in honeybees: from behavior to neural substrates. Annu Rev Neurosci 19:379–404

    Article  PubMed  CAS  Google Scholar 

  • Mota T, Giurfa M, Sandos J-C (2011) Color modulates olfactory learning in honeybees by an occasion-setting mechanism. Learn Mem 18:144–145

    Article  PubMed  Google Scholar 

  • Niggebrügge C, Leboulle G, Menzel R, Komischke B, Hempel de Ibarra N (2009) Fast learning but coarse discrimination of colours in restrained in honeybees. J Exp Biol 212:1344–1350

    Article  PubMed  Google Scholar 

  • Paulk AC, Gronenberg W (2008) Higher order visual input to the mushroom bodies in the bee Bombus impatiens. Arthropod Struct Dev 37:443–458

    Article  PubMed  Google Scholar 

  • Paulk AC, Phillips-Portillo J, Dacks AM, Fellous JM, Gronenberg W (2008) The processing of color, motion, and stimulus timing are anatomically segregated in the bumblebee brain. J Neurosci 28:6319–6332

    Article  PubMed  CAS  Google Scholar 

  • Pavlov IP (1927) Conditioned reflexes. Oxford University Press, New York

    Google Scholar 

  • Raine NE, Chittka L (2008) The correlation of learning speed and natural foraging success in bumblebees. Proc R Soc B 275:803–808

    Article  PubMed  Google Scholar 

  • Real LA (1994) Information processing and the evolutionary ecology of cognitive architecture. In: Real LA (ed) Behavioral mechanisms in evolutionary ecology. The University of Chicago Press, Chicago, pp 99–132

    Google Scholar 

  • Riddell CE, Mallon EB (2006) Insect psychoneuroimmunology: immune response reduces learning in protein starved bumblebees (Bombus terrestris). Brain Behav Immun 20:135–138

    Article  PubMed  CAS  Google Scholar 

  • Riveros AJ, Gronenberg W (2009a) Olfactory learning and memory in the bumblebee Bombus occidentalis. Naturwissenschaften 96:851–856

    Article  PubMed  CAS  Google Scholar 

  • Riveros AJ, Gronenberg W (2009b) Learning from learning and memory in bumblebees. Commun Integr Biol 2:437–440

    Article  PubMed  Google Scholar 

  • Sachse S, Galizia CG (2002) The role of inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study. J Neurophysiol 87:1106–1117

    PubMed  Google Scholar 

  • Sakura M, Okada R, Aonuma H (2012) Evidence for instantaneous e-vector detection in the honeybee using an associative learning paradigm. Proc R Soc B 279:535–542

    Article  PubMed  Google Scholar 

  • Saleh N, Chittka L (2007) Traplining in bumblebees (Bombus impatiens): a foraging strategy’s ontogeny and the importance of spatial reference memory in short-range foraging. Oecologia 151:719–730

    Article  PubMed  Google Scholar 

  • Scheiner R, Erber J, Page RE (1999) Tactile learning and the individual evaluation of the reward in honey bees (Apis mellifera L.). J Comp Physiol A 185:1–10

    Article  PubMed  CAS  Google Scholar 

  • Shafir S, Wiegmann DD, Smith BH, Real LA (1999) Risk-sensitive foraging: choice behaviour of honeybees in response to variability in volume of reward. Anim Behav 57:1055–1061

    Article  PubMed  Google Scholar 

  • Shettleworth SJ (2010) Cognition, evolution, and behavior. Oxford University Press, New York

    Google Scholar 

  • Skorupski P, Chittka L (2007) Differences in photoreceptor processing speed for chromatic and achromatic vision in the bumblebee, Bombus terrestris. J Neurosci 30:3896–3903

    Article  Google Scholar 

  • Skorupski P, Chittka L (2010) Photoreceptor spectral sensitivity in the bumblebee, Bombus impatiens (Hymenoptera: Apidae). PLoS One 5:e12049

    Article  PubMed  Google Scholar 

  • Skorupski P, Spaethe J, Chittka L (2006) Visual search and decision making in bees: time, speed, and accuracy. Int J Comp Psychol 19:342–357

    Google Scholar 

  • Skorupski P, Döring TF, Chittka L (2007) Photoreceptor spectral sensitivity in island and mainland populations of the bumblebee, Bombus terrestris. J Comp Physiol A 193:485–494

    Article  Google Scholar 

  • Spaethe J, Brockmann A, Halbig C, Tautz J (2007) Size determines antennal sensitivity and behavioral thresholds to odors in bumblebee workers. Naturwissenschaften 94:733–739

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan MV (2010) Honey bees as a model for vision, perception, and cognition. Annu Rev Entomol 55:267–284

    Article  PubMed  CAS  Google Scholar 

  • Takeda K (1961) Classical conditioned response in the honey bee. J Insect Physiol 6:168–179

    Article  CAS  Google Scholar 

  • Toda RT, Song J, Nieh JC (2009) Bumblebees exhibit the memory spacing effect. Naturwissenschaften 96:1185–1191

    Article  PubMed  CAS  Google Scholar 

  • von Frisch K (1950) Bees: their vision, chemical senses and language. Cornell University Press, Ithaca

    Google Scholar 

  • Worden BD, Skemp AK, Papaj DR (2005) Learning in two context: the effects of interference and body size in bumblebees. J Exp Biol 208:2045–2053

    Article  PubMed  Google Scholar 

  • Wright GA, Smith BH, Carlton M (2009) A honeybee’s ability to learn, recognize, and discriminate odors depends upon odor sampling time and concentration. Behav Neurosci 123:36–43

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Fabiola Santos and Sophia Riveros for their help building the experimental setup. We also thank three anonymous reviewers for comments that greatly helped to improve this manuscript. This work was supported by the National Science Foundation (IOB-0519483 grant to WG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre J. Riveros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riveros, A.J., Gronenberg, W. Decision-making and associative color learning in harnessed bumblebees (Bombus impatiens) . Anim Cogn 15, 1183–1193 (2012). https://doi.org/10.1007/s10071-012-0542-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-012-0542-6

Keywords

Navigation