Skip to main content
Log in

Microencapsulation of probiotic Lactobacillus brevis ST-69 producing GABA using alginate supplemented with nanocrystalline starch

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Microencapsulation technology can be used to improve the probiotic viability under stress condition in the human gastrointestinal tract and during storage. The purpose of this study was to evaluate the protective effect of encapsulation materials on the survival of GABA-producing probiotics using alginate containing cassava starch nanocrystals under simulated gastrointestinal conditions and shelf storage. Lactobacillus brevis ST-69, GABA-producing probiotic strain, was isolated from kimchi and encapsulated using emulsion technique. The GABA activity, encapsulation efficiency, morphology, probiotic viability were evaluated. The encapsulation efficiency using emulsion technique was 89.72%. Probiotic encapsulated in alginate-nanocrystalline starch gel capsules showed high survival rate at 94.97% of probiotic cells under simulated gastrointestinal conditions and during long-life storage at 4 °C compared to free cells. Results showed that for improving the viability of probiotics against gastrointestinal and storage conditions, complex materials with nanocrystalline starch might be a better encapsulating matrix for the preparation of gel capsules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Chandramouli V, Kailasapathya K, Peirisb P, Jones M. An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. J. Microbiol. Methods 56: 27-35 (2004)

    Article  CAS  Google Scholar 

  • Chen HY, Li XY, Liu BJ, Meng XH. Microencapsulation of Lactobacillus bulgaricus and survival assays under simulated gastrointestinal conditions. J. Funct. Foods 29: 248-255 (2017)

    Article  CAS  Google Scholar 

  • Cook MT, Tzortzis G, Charalampopoulos D, Khutoryanskiy VV. Microencapsulation of probiotics for gastrointestinal delivery. J. Control. Release 162: 56-67 (2012)

    Article  CAS  Google Scholar 

  • Dhakal R, Bajpai VK, Baek KH. Production of GABA (gamma - aminobutyric acid) by microorganisms: a review. Braz. J. Microbiol. 43: 1230-1241 (2012)

    Article  CAS  Google Scholar 

  • De Araújo Etchepare M, Barin JS, Cichoski AJ, Jacob-Lopes E, Wagner R, Fries LLM, de Menezes CR. Microencapsulation of probiotics using sodium alginate. Cienc. Rural 45: 1319-1326 (2015)

    Article  Google Scholar 

  • FAO/WHO. Joint FAO/WHO (Food and Agriculture Organization/World Health Organization) Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food. Ontario: London (2002)

  • Gbassi GK, Vandamme T, Ennahar S, Marchioni E. Microencapsulation of Lactobacillus plantarum spp in an alginate matrix coated with whey proteins. Int. J. Food Microbiol. 129: 103-105 (2009)

    Article  CAS  Google Scholar 

  • Haffner FB, Diab R, Pasc A. Encapsulation of probiotics: insights into academic and industrial approaches. AIMS Mater. Sci. 3: 114-136 (2016)

    Article  Google Scholar 

  • Heidebach T, Först P, Kulozik U. Influence of casein-based microencapsulation on freeze-drying and storage of probiotic cells. J. Food Eng. 98: 309-316 (2010)

    Article  CAS  Google Scholar 

  • Jenkins PJ, Donald AM. The effect of acid hydrolyis on native starch granule structure. Starch-Starke 49: 262-267 (1997)

    Article  CAS  Google Scholar 

  • Kasemwong K, Rungsardthong RU, Srinuanchai W, Itthisoponkul T, Sriroth K. Effect of high-pressure microfluidization on the structure of cassava starch granule. Starch-Starke 63: 160-170 (2011)

    Article  CAS  Google Scholar 

  • Khosravi Zanjani MA, Ghiassi Tarzi B, Sharifana A, Mohammadi N. Microencapsulation of probiotics by calcium alginate-gelatinized starch with chitosan coating and evaluation of survival in simulated human gastro-intestinal condition. Iran. J. Pharm. Res. 13: 843-852 (2014)

    PubMed  PubMed Central  Google Scholar 

  • Kook MC, Cho SC. Production of GABA (gamma amino butyric acid) by lactic acid bacteria. Korean J. Food Sci. An. 33: 377-389 (2013)

    Article  Google Scholar 

  • Krasaekoopt W, Watcharapoka S. Effect of addition of inulin and galactooligosaccharide on the survival of microencapsulated probiotics in alginate beads coated with chitosan in simulated digestive system, yogurt and fruit juice. LWT Food Sci. Technol. 57: 761-766 (2014)

    Article  CAS  Google Scholar 

  • Li G. Intestinal probiotics: Interactions with bile salts and reduction of cholesterol. Proc. Environ. Sci. 12: 1180-1186 (2012)

    Article  CAS  Google Scholar 

  • Li H, Qiu T, Huang G, Cao Y. Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation. Microb. Cell Fact. 9: 85 (2010)

    Article  Google Scholar 

  • Lim HS, Cha IT, Roh SW, Shin HH, Seo MJ. Enhanced production of gamma-aminobutyric acid by optimizing culture conditions of Lactobacillus brevis HYE1 isolated from kimchi, a Korean fermented food. J. Microbiol. Biotechnol. 27: 450-459 (2017)

    Article  CAS  Google Scholar 

  • Lin N, Huang J, Chang PR, Anderson DP, Yu J. Preparation, modification, and application of starch nanocrystals in nanomaterials: a review. J. Nanomater. 2011: 1-13 (2011)

    Google Scholar 

  • Lopez-Cordoba A, Deladino L, Martino M. Release of yerba mate antioxidants from corn starch-alginate capsules as affected by structure. Carbohyd. Polym. 99: 150-157 (2014)

    Article  CAS  Google Scholar 

  • Martin MJ, Lara-Villoslada F, Ruiz MA, Morales ME. Effect of unmodified starch on viability of alginate-encapsulated Lactobacillus fermentum CECT5716. LWT Food Sci. Technol. 53: 480-486 (2013)

    Article  CAS  Google Scholar 

  • Oudah MA, Rajyalakshmi K, Shabana S, Satya AK. Preservation of L. Rhamnosus with calcium alginate and it’s of survival under gastric condition and in yogurt. Acta Sci. Microbiol. 2: 70-74 (2019)

    Article  Google Scholar 

  • Pankasemsuk T, Apichartsrangkoon A, Worametrachanon S, Techarang J. Encapsulation of Lactobacillus casei 01 by alginate along with hi-maize starch for exposure to a simulated gut model. Food Biosci. 16: 32-36 (2016)

    Article  CAS  Google Scholar 

  • Sathyabama S, Ranjith Kumar M, Bruntha Devi P, Vijayabharathi R, Brindha Priyadharisini V. Co-encapsulation of probiotics with prebiotics on alginate matrix and its effect on viability in simulated gastric environment. LWT Food Sci. Technol. 57: 419-425 (2014)

    Article  CAS  Google Scholar 

  • Shin JW, Kim DG, Lee YW, Lee HS, Shin KS, Choi CS, Kwon GS. Isolation and characterization of Lactobacillus brevis AML15 producing γ-aminobutyric acid. J. Life Sci. 17: 970-975 (2007)

    Article  Google Scholar 

  • Silva P, Fries L, Menezes C, Holkem A, Schwan C, Wigmann É, Bastos J, Silva C. Microencapsulation: concepts, mechanisms, methods and some applications in food technology. Cienc. Rural 44: 1304-1311 (2014)

    Article  Google Scholar 

  • Sultana K, Godward G, Reynolds N, Arumugaswamy R, Peiris P, Kailasapathy K. Encapsulation of probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. Int. J. Food Microbiol. 62: 47-55 (2000)

    Article  CAS  Google Scholar 

  • Sunarti TC, Pasaribu FJ, Winarti C. Encapsulation of temulawak extract by using nanocrystalline cassava and sago starches and maltodextrin. Pharm. Sci. Res. 7: 75-80 (2020)

    Article  Google Scholar 

  • Tripathi MK, Giri SK. Probiotic functional foods: Survival of probiotics during processing and storage. J. Funct. Foods 9: 225-241 (2014)

    Article  CAS  Google Scholar 

  • Wang YJ, Truong VD, Wang L. Structures and rheological properties of corn starch as affected by acid hydrolysis. Carbohyd. Polym. 52: 327-333 (2003)

    Article  CAS  Google Scholar 

  • Wu Q, Shah NP. Restoration of GABA production machinery in Lactobacillus brevis by accessible carbohydrates, anaerobiosis and early acidification. Food Microbiol. 69: 151-158 (2018)

    Article  CAS  Google Scholar 

  • Yao M, Xie J, Du H, McClements DJ, Xiao H, Li L. Progress in microencapsulation of probiotics: A review. Compr. Rev. Food Sci. F. 19: 857-874 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by a research Grant (Grant No.251/2562) from Faculty of Medicine, Srinakharinwirot University and National Science and Technology Development Agency Thailand, according to the supporting graduated education contract of Thailand Graduate Institute of Science and Technology (contract no. SCA-CO-2562-9697-TH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malai Taweechotipatr.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thangrongthong, S., Puttarat, N., Ladda, B. et al. Microencapsulation of probiotic Lactobacillus brevis ST-69 producing GABA using alginate supplemented with nanocrystalline starch. Food Sci Biotechnol 29, 1475–1482 (2020). https://doi.org/10.1007/s10068-020-00812-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-020-00812-9

Keywords

Navigation