Skip to main content
Log in

Pathogenic microorganisms, heavy metals, and antibiotic residues in seven Korean freshwater aquaculture species

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

This survey was performed to estimate the levels of pathogenic microorganisms, antibiotic residues, and heavy metals in seven Korean freshwater aquaculture species including Anguilla japonica, Cyprinus carpio nudus, Oncorhynchus mykiss, Pseudobagrus fulvidraco, Semisulcospira coreana, Silurus asotus, and Trionyxs sinensis. None of the ten foodborne pathogens tested in this study were found in any of the species collected from any of the aquaculture farms. Furthermore, no banned chemicals or antibiotic residues were found in any of the species collected from any of the aquaculture farms, except enrofloxacin, which was below guideline limits (0.1 mg/kg). Finally, no species had lead, cadmium, total arsenic, or total mercury concentrations above the Ministry of Food and Drug Safety (MSDF) guidelines (0.5, 0.5, 0.1, and 0.5 mg/kg, respectively). These results ensure the safety of freshwater aquaculture species and will be useful for developing consumption advisories of freshwater fishes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Statistics Korea. Inland Fishery Production. Available from: http://kostat.go.kr Accessed Sep. 17, 2015.

  2. Ministry of Ocean and Fisheries. Fisheries Production Statistics. Available from: http://www. fips.go.kr Accessed Jun. 20, 2015.

  3. Lee JS, Kim DY. The current status and future directions of Korean inland freshwater aquaculture. J. Fish. Bus. Adm. 37: 1–24 (2006)

    Google Scholar 

  4. Harwanto D, Lee GH, Park SM, Choi JS, Kim MR, Hong YK. Oral administration of a hot water extract of the softshell turtle (Trionyx sinensis) improves exercise performance. Prev. Nutr. Food Sci. 20: 133–136 (2015)

    Article  CAS  Google Scholar 

  5. Lee GH, Harwanto D, Park SM, Choi JS, Kim MR, Hong YK. Hot water extract of the leather carp Cyprinus carpionudus improves exercise performance. Prev. Nutr. Food Sci. 20: 246–252 (2015)

    Article  Google Scholar 

  6. Lee GH, Harwanto D, Choi JS, Kim MR, Jin DH, Jin HJ. Hong YK. Protein-rich extract of the bagrid catfish Pseudobagrus fulvidraco improves exercise performance and anti-fatigue. Curr. Nutr. Food Sci. 12: in press (2016)

  7. Lee HC, Yoo CG. A study on the preferences and consumer behavior for inland water fishes. Research on inland fish preferences and consumer behavior patterns. J. Fish. Bus. Adm. 28: 1–18 (2011)

    Google Scholar 

  8. Cabello FC. Heavy use of prophylactic antibiotics in aquaculture: A growing problem for human and animal health and for the environment. Environ. Microbiol. 8: 1137–1144 (2006)

    Article  CAS  Google Scholar 

  9. Samanidou VF, Evaggelopoulou EN. Analytical strategies to determine antibiotic residues in fish. J. Sep. Sci. 30: 2549–2569 (2007)

    Article  CAS  Google Scholar 

  10. Jo MR, Park K, Lee HJ, Lee TS, Jung SH, Lee DS, Yoon HD, Kim PH. Distribution of Fluoroquinolones in the Carp and Eel following their oral administration. J. Korean Fish. Soc. 43: 623–628 (2010)

    CAS  Google Scholar 

  11. Choi JS, Han JJ, Lee DH, Hong SY, Lim SR. Monitoring of antibiotic residues in inland aquaculture fishes from Gyeonggi-do, Korea. p. 72. In: Proceeding of the annual meeting and symposium of Korean Society of Fisheries and Aquatic Science. June 25, Pukyung National University, Busan, Korea. Korean Society of Fisheries and Aquatic Science, Busan, Korea (2010)

    Google Scholar 

  12. Korea Food and Drug Administration (KFDA). Malachite green. Risk Profile. Seoul, Korea. pp. 1-70 (2010)

  13. Kyunghyang Shinmum. Detection of malachite green in aquacultured catfish from Seoul Garak Market. Available from: http://news.khan.co.kr. Accessed Mar. 12, 2015.

  14. Dhanakumar S, Solaraj G, Mohanraj R. Heavy metal partitioning in sediments and bioaccumulation in commercial fish species of three major reservoirs of river Cauvery delta region, India. Ecotox. Environ. Safe. 13: 145–151 (2015)

    Article  Google Scholar 

  15. Kim DH, Kim YG, Jang BK. Contents of lead, cadmium and zinc in bone, muscle and fin of Carassius carassius from middle stream of Nakdong river, Korea. Korean J. Prev. Med. 21: 307–319 (1988)

    Google Scholar 

  16. Choi Y, Kim DH. Contents of total and organic mercury in bone, muscle and fin of Carassius carassius from middle stream of Nakdong river, Korea. Korean J. Rural Med. 18: 131–140 (1993)

    Google Scholar 

  17. Kim IS, Han SH, Ou SK. A study on the heavy metal contents in Carassius auratus of Jeonlabuk-do area. J. Korean Soc. Food Sci. Nutr. 22: 484–488 (1993)

    Google Scholar 

  18. Shin MJ, Park YM, Lee JE, Seo EW. Heavy metal contents in tissues of fishes in Andong and Imha reservoirs. J. Life Sci. 20: 1378–1384 (2010)

    Article  Google Scholar 

  19. Kim HY, Kim SY, Lee JH, Jang YM, Lee MS, Park JS, Lee KH, Kim JC. Monitoring of heavy metals in fishes in Korea-As, Cd, Cu, Pb, Mn, Zn, total Hg. Korean J. Food Sci. Technol. 39: 353–359 (2007)

    Google Scholar 

  20. Kim CK, Lee TW, Lee KT, Lee JH, Lee CB. Nationwide monitoring of mercury in wild and farmed fish from fresh and coastal waters of Korea. Chemosphere 89: 1360–1368 (2012)

    Article  CAS  Google Scholar 

  21. Ministry of Food Drug Safety (MFDS), Food Code. Korean Foods Industry Association, Seoul, Korea (2014)

  22. National Fisheries Research and Development (NFRDI), Analysis of antibiotic using HPLC for fishery product. Gudeok Press, Busan, Korea. pp. 1-99 (2006)

  23. Gram L, Huss HH. Microbiological spoilage of fish and fish products. Int. J. Food Microbiol. 33: 121–137 (1996)

    Article  CAS  Google Scholar 

  24. Junior PG, Assunção AWA, Baldin JC, Amaral LA. Microbiological quality of whole and filleted shelf-tilapia. Aquaculture 433: 196–200 (2014)

    Article  Google Scholar 

  25. Suhalim RR, Huanga YW, Chen J. Interaction of Escherichia coli O157:H7 E318 cells with the mucus of harvested channel catfish (Ictalurus punctatus). LWTFood Sci. Technol. 40: 1266–1270 (2007)

    CAS  Google Scholar 

  26. El-Shafai SA, Gijzen HJ, Nasr FA, El-Gohary FA. Microbial quality of tilapia reared in fecal-contaminated ponds. Environ. Res. 95: 231–238 (2004)

    Article  CAS  Google Scholar 

  27. Guzmán MC, de los Angeles Bistoni M, Tamagnini LM, González RD. Recovery of Escherichia coli in fresh water fish, Jenynsia multidentata and Bryconamericus iheringi. Water Res. 38: 2368–2374 (2004)

    Article  Google Scholar 

  28. Kim TJ, Min JG, Park SM, Choi JS, Lee MS, Kim YM, Chung YH. Development of an Hazard Analysis Critical Control Point application model for a flatfish (Paralichthys olivaceus) aquaculture farm. J. Fish. Mar. Sci. Edu. 25: 1055–1067 (2013)

    Google Scholar 

  29. Kim YM, Lee MS, Chung YH. The Residues of antibiotics (tetracycline, oxolinic acid and ciplofloxacin) and malachite green in cultured rainbow trout. J. Fish. Mar. Sci. Edu. 25: 828–835 (2013)

    Google Scholar 

  30. Srivastava S, Sinha R, Roy D. Toxicological effects of malachite green. Aquat. Toxicol. 66: 319–329 (2004)

    Article  CAS  Google Scholar 

  31. Lee JB, Kim, HY, Jang YM, Song, JY, Woo SM, Park MS, Lee HS, Lee SK, Kim M. Determination of malachite green and crystal violet in processed fish products. Food Addit. Contam. 27: 953–961 (2010)

    Article  CAS  Google Scholar 

  32. Maita M. HACCP system: A safety-ring for farmed fish. Fisheries Sci. 68: S14781–S1484 (2002)

    Google Scholar 

  33. Abe N, Fuchino K. Survey of residual antibiotic agents in cultured fish and shellfish. Shokuhin Eiseigaku Zasshi 42: 335–338 (2001)

    Article  CAS  Google Scholar 

  34. Done HY, Halden RU. Reconnaissance of 47 antibiotics and associated microbial risks in seafood sold in the United States. J. Hazard. Mater. 282: 10–17 (2015)

    Article  CAS  Google Scholar 

  35. Hussain M, Muhammad S, Malik RN, Khan MU, Farooq U. Status of heavy metal residues in fish species of Pakistan. Rev. Environ. Contam. T. 230: 111–132 (2014)

    CAS  Google Scholar 

  36. MacFarlane GR, Burchett MD. Cellular distribution of copper, lead and zinc in the grey mangrove, Avicennia marina (Forsk.) Vierh. Aquat. Bot. 68: 45–59 (2000)

    Article  CAS  Google Scholar 

  37. Nussey G, van Vuren JHJ, du Preez HH. Bioaccumulation of chromium, manganese, nickel and lead in the tissues of the moggel, Labeo umbratus (Cyprinidae), from Witbank Dam, Mpumalanga. Water SA 26: 269–284 (2000)

    CAS  Google Scholar 

  38. Kim YC, Han SH. A study on heavy metal contents of the fresh water fish, and the shellfish in Korea. J. Food Hyg. Saf. 14: 305–318 (1999)

    Google Scholar 

  39. Sheo HJ, Hong SS, Song CY, Jeon SR. A study on the contents of heavy metals in freshwater fishes of Yeong San river. J. Kor. Soc. Food Sci. Nutr. 20: 615–620 (1991)

    CAS  Google Scholar 

  40. Shon DH, Hong SG, Song CY, Jeon SR. A study on the total mercury contents in fresh-water fishes. Korean J. Food Sci. Technol. 14: 168–173 (1982)

    CAS  Google Scholar 

  41. Ward DM, Nislow KH, Chen CY, Folt CL. Rapid, efficient growth reduces mercury concentrations in stream-dwelling Atlantic salmon. Trans. Am. Fish. Soc. 139: 1–10 (2010)

    Article  CAS  Google Scholar 

  42. Staudinger MD. Species-and size-specific variability of mercury concentrations in four commercially important finfish and their prey from the northwest Atlantic. Mar. Pollut. Bull. 62: 734–740 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi-Ryung Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, JS., Park, SM., Kim, Y.H. et al. Pathogenic microorganisms, heavy metals, and antibiotic residues in seven Korean freshwater aquaculture species. Food Sci Biotechnol 25, 1469–1476 (2016). https://doi.org/10.1007/s10068-016-0228-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-016-0228-y

Keywords

Navigation