Skip to main content
Log in

Attachment and biofilm formation of Pseudomonas fluorescens PSD4 isolated from a dairy processing line

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The effects of different nutrient sources and temperatures on attachment and biofilm formation of Pseudomonas fluorescens PSD4, a dairy isolate, were studied. Initial adherence and attachment capabilities among different strains were studied using microtitre plate assays. Biofilm development was observed using confocal microscopy. Strongly adherent cells were seen in protein rich media. Citrate as a carbon source enhanced biofilm formation. Glucose did not favor biofilm development. Psychrotrophic P. fluorescens PSD4 formed strongly adherent biofilms having high metabolic activities at low temperatures. P. fluorescens PSD4 with spoilage potential was capable of forming strong biofilms in dairy processing environments. Biofilm formation was influenced by nutrient availability and growth conditions. These factors should be considered for design of effective anti-biofilm strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Srey S, Jahid IK, Ha SD. Biofilm formation in food industries: A food safety concern. Food Control 31: 572–585 (2013)

    Article  Google Scholar 

  2. Lewis K. Riddle of biofilm resistance. Antimicrob. Agents Ch. 45: 999–1007 (2001)

    Article  CAS  Google Scholar 

  3. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: A common cause of persistent infections. Science 284: 1318–1322 (1999)

    Article  CAS  Google Scholar 

  4. Simoes M, Simoes LC, Vieira MJ. A review of current and emergent biofilm control strategies. LWT-Food Sci. Technol. 43: 573–583 (2010)

    Article  CAS  Google Scholar 

  5. Wiedmann MD, Weilmeier SS, Dineen R, Ralyea, Boor KJ. Molecular and phenotypic characterization of Pseudomonas spp. isolated from milk. Appl. Environ. Microb. 66: 2085–2095 (1999)

    Article  Google Scholar 

  6. Dogan B, Boor KJ. Genetic diversity and spoilage potentials among Pseudomonas spp. isolated from fluid milk products and dairy processing plants. Appl. Environ. Microb. 69: 130–138 (2003)

    Article  CAS  Google Scholar 

  7. Spilker T, Coenye T, Vandamme P, LiPuma JJ. PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. J. Clin. Microbiol. 42: 2074–2079 (2004)

    Article  CAS  Google Scholar 

  8. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731–2739 (2011)

    Article  CAS  Google Scholar 

  9. Hinsa MS, O’Toole GA. Biofilm formation by Pseudomonas fluorescens WCS365: A role for LapD. Microbiology 152: 1375–1383 (2006)

    Article  CAS  Google Scholar 

  10. Van Houdt R, Aertsen A, Jansen A, Quintana AL, Michiels CW. Biofilm formation and cell-to-cell signalling in Gram-negative bacteria isolated from a food processing environment. J. Appl. Microbiol. 96: 177–184 (2004)

    Article  Google Scholar 

  11. Sandasi M, Leonard C, Viljoen A. The in vitro antibiofilm activity of selected culinary herbs and medicinal plants against Listeria monocytogenes. Lett. Appl. Microbiol. 50: 30–35 (2010)

    Article  CAS  Google Scholar 

  12. Cleto S, Matos S, Kluskens L, Vieira MJ. Characterization of contaminants from a sanitized milk processing plant. PLoS ONE 7: e40189 (2012)

    Article  CAS  Google Scholar 

  13. Teh KH, Flint S, Palmer J, Lindsay D, Andrewes P, Bremer P. Thermo-resistant enzyme-producing bacteria isolated from the internal surfaces of raw milk tankers. Int. Dairy J. 21: 742–747 (2011)

    Article  CAS  Google Scholar 

  14. Dourou D, Beauchamp CS, Yoon Y, Geornaras I, Belk KE, Smith G, Nychas G-JE, Sofos NJ. Attachment and biofilm formation by Escherichia coli O157:H7 at different temperatures, on different food-contact surfaces encountered in beef processing. Int. J. Food Microbiol. 149: 262–268 (2011)

    Article  Google Scholar 

  15. Marchand S, Block JD, Jonghe VD, Coorevits A, Heyndrickx M, Herman L. Biofilm formation in milk production and processing environments; influence on milk quality and safety. Compr. Rev. Food Sci. F. 11: 133–147 (2012)

    Article  CAS  Google Scholar 

  16. Teh KH, Flint S, palmer J, Andrews P, Bremer P, Lindsay D. Biofilm-An unrecognised source of spoilage enzymes in dairy products? Int. Dairy J. 34: 32–40 (2014)

    Article  CAS  Google Scholar 

  17. Hood SK, Zottola EA. Adherence to stainless steel by food borne microorganisms during growth in model food systems. Int. J. Food Microbiol. 37: 145–153 (1997)

    Article  CAS  Google Scholar 

  18. Hood SK, Zottola EA. Growth media and surface conditioning influence the adherence of Pseudomonas fragi, Salmonella typhimurium, and Listeria monocytogenes cells to stainless steel. J. Food Prot. 60: 1034–1037 (1997)

    Google Scholar 

  19. Kim H, Ryu J-H, Beuchat LR. Attachment of and biofilm formation by Enterobacter sakazakii on stainless steel and enteral feeding tubes. Appl. Environ. Microb. 72: 5846–5856 (2006)

    Article  CAS  Google Scholar 

  20. Dancer GI, Mah JH, Kang DH. Influences of milk components on biofilm formation of Cronobacter spp. (Enterobacter sakazakii). Lett. Appl. Microbiol. 48: 718–725 (2009)

    CAS  Google Scholar 

  21. Varhimo E, Varmanen P, Fallarero A, Skogman M, Pyorala S, Iivanainen A, Sukura A, Vuorela, Savijoki. Alpha- and β-casein components of host milk induce biofilm formation in the mastitis bacterium Streptococcus uberis. Vet. Microbiol. 149: 381–389 (2011)

    Article  CAS  Google Scholar 

  22. Caiazza NC, O’Toole GA. SadB is required for the transition from reversible to irreversible attachment during bioWlm formation by Pseudomonas aeruginosa PA14. J. Bacteriol. 186: 4476–4485 (2004)

    Article  CAS  Google Scholar 

  23. O’Toole GA, Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways: A genetic analysis. Mol. Microbiol. 28: 449–461 (1998)

    Article  Google Scholar 

  24. Hinsa SM, Espinosa-Urgel M, Ramos JL, O’toole GA. Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Mol. Microbiol. 49: 905–918 (2003)

    Article  CAS  Google Scholar 

  25. Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T. Biofilm formation by Pseudomonas aeruginosa wild type, flagella, and type IV pili mutants. Mol. Microbiol. 48: 1511–1524 (2003)

    Article  CAS  Google Scholar 

  26. Klausen M, Gjeremansen M, Kreft JU, Tolker-Nielsen T. Dynamics of development and dispersal in sessile microbial communities: Examples from Pseudomonas aeruginosa and Pseudomonas putida model biofilms. FEMS Microbiol. Lett. 261: 1–11 (2000)

    Article  Google Scholar 

  27. Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersboll BK, Molin S. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146: 2395–2407 (2000)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravishankar Rai Vittal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aswathanarayan, J.B., Vittal, R.R. Attachment and biofilm formation of Pseudomonas fluorescens PSD4 isolated from a dairy processing line. Food Sci Biotechnol 23, 1903–1910 (2014). https://doi.org/10.1007/s10068-014-0260-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-014-0260-8

Keywords

Navigation