Skip to main content
Log in

Effect of temperature on the growth kinetics and predictive growth model of Aeromonas hydrophila on squid (Sepioteuthis sepioidea)

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

This study developed a predictive growth model of Aeromonas hydrophila on fresh squids as a storage temperature (5°C–40°C). The primary models of specific growth rates (SGR) and lag time (LT) fit well (R 2≥0.973). Secondary polynomial models were obtained by non-linear regression and calculated as: SGR=0.05152+0.00337*T+ 0.00039*T2; LT=50.51030?2.56290*T+0.03446*T2. The appropriateness of the secondary model was verified by mean square error (MSE; 0.006 for SGR, 0.256 for LT), bias factor (B f ; 0.999 for SGR, 1.007 for LT), accuracy factor (A f ; 1.025 for SGR, 1.026 for LT), and coefficient of determination (r 2; 0.991 for SGR, 0.993 for LT). The secondary model is therefore in good agreement with the validation and may be used as a practical prediction for A. hydrophila growth on squid. Ultimately, the developed models are of importance in reducing A. hydrophila levels in the seafood production, processing, and distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cruz-Romero M, Kelly AL, Kerry JP. Effects of high pressure treatment on the microflora of oysters (Crassostrea gigas) during chilled storage. Innovat. Food Sci. Emerg. Tech. 9: 441–447 (2008)

    Article  Google Scholar 

  2. Parihar VS, Barbuddhe SB, Danielsson-Tham ML, Tham W. Isolation and characterization of Listeria species from tropical seafoods. Food Control 19: 566–569 (2008)

    Article  CAS  Google Scholar 

  3. Mahmoud BSM. Reduction of Vibrio vulnificus in pure culture, half shell and whole shell oysters (Crassostrea virginica) by X ray. Int. J. Food Microbiol. 130: 135–139 (2009)

    Article  Google Scholar 

  4. Palumbo SA. Is refrigeration enough to restrain foodborne pathogens? J. Food Prot. 49: 1003–1009 (1986)

    Google Scholar 

  5. Altwegg M, Geiss HK. Aeromonas as a human pathogen. CRC Crit. Rev. Microbiol. 16: 253–286 (1989)

    Article  CAS  Google Scholar 

  6. Chopra AK, Houston CW. Enterotoxins in Aeromonas-associated gastroenteritis. Microbes Infect. 1: 1129–1137 (1999)

    Article  CAS  Google Scholar 

  7. Wu CJ, Wu JJ, Yan JJ, Lee HC, Lee NY, Chang CM, Shih HI, Wu HM, Wang LR, Ko WC. Clinical significance and distribution of putative virulence markers of 116 consecutive clinical Aeromonas isolates in southern Taiwan. J. Infect. 54: 151–158 (2007)

    Article  Google Scholar 

  8. Josep SW, Carnahan A. The isolation, identification, and systematics of the motile Aeromonas species. Ann. Rev. Fish Dis. 4: 315–343 (1994)

    Article  Google Scholar 

  9. Cunliffe DA, Adcock P. Isolation of Aeromonas spp. from water by using anaerobic incubation. Appl. Environ. Microbiol. 55: 2138–2140 (1989)

    CAS  Google Scholar 

  10. Daskalov H. The importance of Aeromonas hydrophila in food safety. Food Control 17: 474–483 (2006)

    Article  Google Scholar 

  11. Callister SM, Agger WA. Enumeration and characterisation of Aeromonas hydrophila and Aeromonas caviae isolated from grocery store produce. Appl. Environ. Microbiol. 53: 249–253 (1987)

    CAS  Google Scholar 

  12. Okrend AJG, Rose BE, Bennet B. Incidence and toxigenicity of Aeromonas species in retail poultry, beef and pork. J. Food Prot. 50: 509–513 (1987)

    Google Scholar 

  13. Gobat P-F, Jemmi T. Distribution of mesophilic Aeromonas species in raw and ready-to-eat fish and meat products in Switzerland. Int. J. Food Microbiol. 20: 117–120 (1993)

    Article  CAS  Google Scholar 

  14. Hänninen M-L. Occurrence of Aeromonas spp. in samples of ground meat and chicken. Int. J. Food Microbiol. 18: 339–342 (1993)

    Article  Google Scholar 

  15. Araujo RM, Arrlbas RM, Pares R. Distribution of Aeromonas species in waters with different levels of pollution. J. Appl. Bacteriol. 71: 182–186 (1991)

    Article  CAS  Google Scholar 

  16. El-Khashab EF, El-Yazed HSA. Epidemiology of Aeromonas hydrophila infection in ducks transmitted from fish in duck-fish farm. Beni-Suef Vet. Med. J. XI: 751–764 (2001)

    Google Scholar 

  17. Koseki S, Isobe S. Prediction of pathogen growth on iceberg lettuce under real temperature history during distribution from farm to table. Int. J. Food Microbiol. 194: 239–248 (2005)

    Article  Google Scholar 

  18. Palumbo SA, Williams AC, Buchanan RL, Phillips JG. Model for the aerobic growth of Aeromonas hydrophila K144. J. Food Prot. 54: 429–435 (1991)

    Google Scholar 

  19. Hudson JA. Construction of and comparisons between response surface models for Aeromonas hydrophila ATCC7966 and a food isolate under aerobic conditions. J. Food Prot. 55: 968–972 (1992)

    Google Scholar 

  20. McClure PJ, Cole MB, Davies KW. An example of the stages in the development of a predictive mathematical model for microbial growth: the Effects of NaCl, pH and temperature on the growth of Aeromonas hydrophila. Int. J. Food Microbiol. 23: 359–375 (1994)

    Article  CAS  Google Scholar 

  21. Gill CO, Greer GG, Dilts BD. The aerobic growth of Aeromonas hydrophila and Listeria monocytogenes in broths and on pork. Int. J. Food Microbiol. 35: 67–74 (1997)

    Article  CAS  Google Scholar 

  22. Devlieghere F, Lefevere I, Magnin A, Debevere J. Growth of Aeromonas hydrophila in modified-atmosphere-packed cooked meat products. Food Microbiol. 17: 185–196 (2000)

    Article  Google Scholar 

  23. Sautour M, Chihib NE, Hornez JP. The effects of temperature, water activity and pH on the growth of Aeromonas hydrophila and on its subsequent survival in microsam water. J. Appl. Microbiol. 95: 807–813 (2003)

    Article  CAS  Google Scholar 

  24. Gibson AM, Bratchell N, Roberts TA. Predicting microbial growth: Growth response of Salmonella in a laboratory medium as affected by pH, sodium chloride and storage temperature. Int. J. Food Microbiol. 6: 155–178 (1988)

    Article  CAS  Google Scholar 

  25. Dalgaard P, Ross T, Kamperman L, Neumeyer K, Mcmeekin TA. Estimation of bacterial growth rates from turbidimetric and viable count data. Int. J. Food Microbiol. 23: 391–404 (1994)

    Article  CAS  Google Scholar 

  26. Özbas ZY, Vurai H, Aytac SA. Effect of modified atmosphere and vacuum packaging on the growth of spoilage and inoculated pathogenic bacteria on fresh poultry. Z. Lebensm. Unters. F. A 203: 326–332 (1996)

    Article  Google Scholar 

  27. Popoff M, Lallier R. Biochemical and serological characteristics of Aeromonas. pp. 127–145. In: Methods in Microbiology. Bergan T (ed). Academic Press, New York, NY, USA (1984)

    Google Scholar 

  28. Palumbo SA, Morgan DR, Buchanan RL. Influence of temperature, NaCl, and pH on the growth of Aeromonas hydrophila. J. Food Sci. 54: 1417–1421 (1985)

    Article  Google Scholar 

  29. Davies AR, Slade A. Fate of Aeromonas and Yersinia in modified-atmosphere-packed (MAP) cod and trout. Lett. Appl. Microbiol. 21: 354–358 (1995)

    Article  CAS  Google Scholar 

  30. Doherty A, Sheridan JJ, Allen P, McDowell DA, Blair IS, Harrington D. Survival and growth of Aeromonas hydrophila on modified atmosphere packaged normal and high pH lamb. Int. J. Food Microbiol. 128: 379–392 (1996)

    Article  Google Scholar 

  31. Aytac SA, Özbas ZY. Growth of Yersinia enterocolitica and Aeromonas hydrophila in acidophilus yoghurt. Aust. J. Dairy Technol. 49: 90–92 (1994)

    Google Scholar 

  32. Buchanan RL, Phillips JG. Response surface models for predicting the effects of temperature, pH, sodium chloride content, sodium nitrite concentration and atmosphere on the growth of Listeria monocytogenes. J. Food Prot. 53: 370–376 (1990)

    Google Scholar 

  33. Buchanan RL, Bagi LK, Goins RV, Phillips JG. Response surface model for the growth kinetics of Escherichia coli O157:H7. Food Microbiol. 10: 303–315 (1993)

    Article  Google Scholar 

  34. Bhaduri S, Turner-Jones CO, Buchanan RL, Phillips JG. Response surface models of the effect of pH, sodium chloride and sodium nitrite on growth of Yersinia enterocolitica at low temperatures. Int. J. Food Microbiol. 23: 333–343 (1994)

    Article  CAS  Google Scholar 

  35. Box GEP, Draper NR. Least squares for response surface work. pp. 34–103. In: Empirical Model - Building and Response Surfaces. Box GEP, Draper NR (eds). John Wiley and Sons Inc., New York, NY, USA (1987)

    Google Scholar 

  36. Grau FH, Vanderlinde PB. Aerobic growth of Listeria monocytogenes on beef lean and fatty tissue: Equations describing the effects of temperature and pH. J. Food Prot. 56: 96–101 (1993)

    Google Scholar 

  37. Duffy LL, Vanderlinde PB, Grau FH. Growth of Listeria monocytogenes on vacuum-packed cooked meats: Effect of pH, Aw, nitrite and sodium ascorbate. Int. J. Food Microbiol. 23: 377–390 (1994)

    Article  CAS  Google Scholar 

  38. Sutherland JP, Bay AJ, Roberts TA. Predictive modeling of growth of Staphylococcus aureus: The effects of temperature, pH, and sodium chloride. Int. J. Food Microbiol. 21: 217–236 (1994)

    Article  CAS  Google Scholar 

  39. Adair C, Kilsby DC, Whittal PT. Comparison of the School field (non-linear Arrhenius) model and the square root model for predicting bacterial growth in foods. Food Microbiol. 6: 7–18 (1989)

    Article  Google Scholar 

  40. Nolan DA, Chanplin DC, Troller JA. Minimal water activity levels for growth and survival of Listeria monocytogenes and Listeria innocua. Int. J. Food Microbiol. 16: 323–335 (1992)

    Article  CAS  Google Scholar 

  41. Ross T. Predictive Food Microbiology Models in the Meat Industry. Meat and Livestock Australia, Sydney, Australia. p. 196 (1999)

    Google Scholar 

  42. Chung MS, Kim BY, Park SY, Ha SD. Growth kinetics and predictive model of Aeromonas hydrophila in a broth-based system. Food Sci. Biotech. 21: 219–224 (2012)

    Article  Google Scholar 

  43. Ross T, Dalgaard P, Tienungoon S. Predictive modelling of the growth and survival of Listeria in fishery products. Int. J. Food Microbiol. 62: 231–245 (2000)

    Article  CAS  Google Scholar 

  44. Duh YH, Schaffner DW. Modeling the effect of temperature on the growth rate and lag time of Listeria innocua and Listeria monocytogenes. J. Food Prot. 56: 205–210 (1993)

    Google Scholar 

  45. Davey KR, Daughtry BJ. Validation of a model for predicting the combined effect of three environmental factors on both exponential and lag phases of bacterial growth: temperature, salt concentration and pH. Food Res. Int. 28: 223–237 (1995)

    Article  Google Scholar 

  46. Yoon KS, Burnette CN, Oscar TP. Development of predictive models for the survival of Campylobacter jejuni (ATCC 43051) on cooked chicken breast patties and in broth as a function of temperature. J. Food Prot. 67: 64–70 (2004).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Do Ha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S.Y., Ha, SD. Effect of temperature on the growth kinetics and predictive growth model of Aeromonas hydrophila on squid (Sepioteuthis sepioidea). Food Sci Biotechnol 23, 307–312 (2014). https://doi.org/10.1007/s10068-014-0043-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-014-0043-2

Keywords

Navigation