Skip to main content
Log in

Incidence of Listeria in Egyptian meat and dairy samples

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

A total of 180 food samples including meat (raw lean beef, frozen lean beef, and frozen chicken) and dairy products (raw milk, Zabady and Kareesh cheese) were analysed for Listeria. Isolates were differentiated using morphological, cultural, and biochemical tests and an API-Listeria kit. Zabady cheese was completely free of Listeria. The highest incidence rate (13.33%) was in frozen lean beef. Raw lean beef and milk products showed an incidence rate of 6.67%. The lowest incidence rate (3.33%) was in Kareesh cheese and frozen chicken meat samples. L. monocytogenes showed the lowest incidence rate (0.55%), isolated from one frozen lean beef sample. L. ivanovii and L. grayi showed the highest incidence rate (2.22%), isolated from 4 samples. L. innocua and L. seeligeri were positive in 3 samples (1.67%), and L. welshimeri in 2 samples (1.11%). L. monocytogenes and L. ivanovii were positive for virulence factors (hemolytic properties, and extracellular enzyme activities).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Johnson J, Jinneman K, Stelma G, Smith BG, Lye D, Messer J, Ulaszek J, Evsen L, Gendel S, Bennett RW, Swaminathan B, Pruckler J, Steigerwalt A, Kathariou S, Yildirim S, Volokhov D, Rasooly A, Chizhikov V, Wiedmann M, Fortes E, Duvall RE, Hitchins AD. Natural atypical Listeria innocua strains with Listeria monocytogenes pathogenicity island 1 genes. Appl. Environ. Microbiol. 70: 4256–4266 (2004)

    CAS  Google Scholar 

  2. Graves LM, Helsel LO, Steigerwalt AG, Morey RE, Daneshvar MI, Roof SE, Orsi RH, Fortes ED, Millilo SR, den Bakker HC, Wiedmann M, Swaminathan B, Sauders BD. Listeria marthii sp. nov., isolated from the natural environment, Finger Lakes National Forest. Int. J. Syst. Evol. Microbiol. 60: 1280–1288 (2010)

    Article  CAS  Google Scholar 

  3. Leclercq A, Clermont D, Bizet C, Grimont P, Le Flèche-Matéos A, Roche S, Buchrieser C, Cadet-Daniel V, Le Monnier A, Lecuit M, Allerberger F. L Listeria rocourtiae sp. nov. Int. J. Syst. Evol. Microbiol. 60: 2210–2214 (2009

    Article  Google Scholar 

  4. Robinson RK, Batt CA, Patel PD. Encyclopedia of Food Microbiology. Academic Press, San Diego, CA, USA (2000)

    Google Scholar 

  5. Low JC, Donachie W. A review of Listeria monocytogenes and listeriosis. Vet. J. 153: 9–29 (1997).

    Article  CAS  Google Scholar 

  6. Liu D, Lawrence M, Austin FW, Ainsworth AJ. Comparative assessment of acid, alkali and salt tolerance in Listeria monocytogenes virulent and avirulent strains. FEMS Microbiol. Lett. 243: 373–378 (2005)

    Article  CAS  Google Scholar 

  7. Sleator RD, Gahan CGM, Hill C. A postgenomic appraisal of osmotolerance in Listeria monocytogenes. Appl. Environ. Microbiol. 69: 1–9 (2003)

    CAS  Google Scholar 

  8. Food and Drug Administration. Quantitative assessment of the relative risk to public health from food borne Listeria monocytogenes among selected categories of ready-to-eat foods. Available from: http://www.fda.gov/Food/FoodScienceResearch/RiskSafetyAssessment/ucm183966.htm. Accessed 2003.

  9. Dhanashree B, Otta SK, Karunasagar I, Goebel W, Karunasagar I. Incidence of Listeria spp. in clinical and food samples in Mangalore, India. Food Microbiol. 20: 447–453 (2003).

    Article  Google Scholar 

  10. WHO. Foodborne listeriosis: Report of a WHO informal working group. World Health Organization. Geneva, Switzerland. pp. 2–18 (1988)

    Google Scholar 

  11. Malik SVS, Barbuddhe SB, Chaudhari SP. Listeric infections in humans and animals in Indian Subcontinent: A review. Trop. Anim. Health. Pro. 34: 359–381 (2002)

    Article  CAS  Google Scholar 

  12. Okutani A, Okada Y, Yamamoto S, Igimi S. Overview of Listeria monocytogenes contamination in Japan. Int. J. Food Microbiol. 93: 131–140 (2004)

    Article  Google Scholar 

  13. Konosonoka IH, Jemeljanovs A, Osmane B, Ikauniece D, Gulbe G. Incidence of Listeria spp. in dairy cows feed and raw milk in Latvia. ISRN Vet. Sci. 2012: 1–5 (2012)

    Article  Google Scholar 

  14. Altalhi AA. Antilisterial activity of plantaricin UG1 during manufacture of Zabady and Kareesh cheese: Two Arabian dairy products. Int. J. Biomed. Sci. 4: 319–322 (2008)

    CAS  Google Scholar 

  15. Enan G. Control of the regrowing bacteriocin resistant variants of Listeria monocytogenes LMG 10470 in vitro and in food by nisinplantaricin UG1 mixture. Biotechnology 5: 143–147 (2006).

    Article  CAS  Google Scholar 

  16. International Organization for Standadrization 11290-1 (ISO11290-1). Microbiology of food and animal feeding stuffs-Horizontal method for the detection and enumeration of Listeria monocytogenes. ISO, Geneva, Switzerland (1996)

    Google Scholar 

  17. French Association for Standardization (AFNOR). Food microbiologydetection of Listeria monocytogenes-routine method, Vol. 08-055, AFNOR, Paris, France (1993)

    Google Scholar 

  18. Aygun O, Pehlivanlar S. Listeria spp. in the raw milk and dairy products in Antakya, Turkey. Food Control 17: 676–679 (2006)

    Article  Google Scholar 

  19. Seeliger HPR, Jones D. The genus Listeria. Vol. II, pp. 1235–1245. In: Bergey’s Manual of Systematic Bacteriology. Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds). Williams & Wilkins, Baltimore, MD, USA (1986)

    Google Scholar 

  20. Coffey A, Rombouts FM, Abee T. Influence of environmental parameters on phosphatidylcholine phospholipase C production in Listeria monocytogenes: A convenient method to differentiate L. monocytogenes from other Listeria species. Appl. Environ. Microbiol. 62: 1252–1256 (1996)

    CAS  Google Scholar 

  21. Shumi W, Hossain T, Anwar MN. Production of protease from Listeria monocytogenes. Int. J. Agri. Biol. 6: 1097–1100 (2004)

    CAS  Google Scholar 

  22. Baghel RK, Sharma R, Pandey AK. Activity of acid phosphatase in the ectomycorrhizal fungus Cantharellus tropicalis under controlled conditions. J. Trop. Forest Sci. 21: 218–222 (2009)

    Google Scholar 

  23. Bille J, Catimel B, Bannerman E, Jacquet C, Yersin MN, Caniaux I, Monget D, Rocourt J. API Listeria, a new and promising one-day system to identify Listeria isolates. Appl. Environ. Microbiol. 58: 1857–1860 (1992)

    CAS  Google Scholar 

  24. Akman D, Duran N, Digrak M. Prevalence of Listeria species in ice creams sold in the cities of Kahramanmaras and Adana. Turk. J. Med. Sci. 34: 257–262 (2004)

    Google Scholar 

  25. Harvey AR, Champe PC. Lippincott’s Illustrated Reviews: Microbiology (Lippincott’s Illustrated Reviews Series). Lippincott Williams & Wilkins, Hagerstown, MD, USA. pp. 332–353 (2007)

    Google Scholar 

  26. Barbuddhe SB, Malik SVS, Bhilegaonkar KN, Kumar P, Gupta LK. Isolation of Listeria monocytogenes and anti-listeriolysin O detection in sheep and goats. Small Ruminant Research 38: 151–155 (2000)

    Article  Google Scholar 

  27. Gallegos JM, Vanegas MC, Albarracín Y, Máttar S, Poutou RA, Carrascal AK. Frequency of isolation of Listeria species in different retail foods in Colombia. Anim. Prod. Res. Adv. 4: 9–18 (2008)

    Google Scholar 

  28. Fenlon DR, Wilson J, Donachie W. The incidence and level of Listeria monocytogenes contamination of food sources at primary production and initial processing. J. Appl. Bacteriol. 81: 641–650 (1996)

    CAS  Google Scholar 

  29. Edson DC, Empson S, Massey LD. Pathogen detection in food microbiology laboratories: An analysis of qualitative proficiency test data, 199–2007. J. Food Safety 29: 521–530 (2009)

    Article  Google Scholar 

  30. Poltronieri P, de Blasi MD, D’Urso OF. Detection of Listeria monocytogenes through real-time PCR and biosensor methods. Plant Soil Environ. 55: 363–369 (2009)

    Article  CAS  Google Scholar 

  31. Atil E, Ertas HB, Ozbey G. Isolation and molecular characterization of Listeria spp. from animals, food and environmental samples. Vet. Med. 56: 386–394 (2011)

    Google Scholar 

  32. Beak SY, Lim YS, Lee DH, Min KH, Kim CM. Incidence and characterization of Listeria monocytogenes from domestic and imported foods in Korea. J. Food Protect. 63: 186–189 (2000)

    Google Scholar 

  33. Hudson JA, Mott SJ, Delacy KM, Edridge AL. Incidence and coincidence of Listeria spp. motile aeromonads and Yersinia enterocolitica on ready-to-eat flesh foods. Int. J. Food Microbiol. 16: 99–108 (1992)

    Article  CAS  Google Scholar 

  34. Rocourt J, Hogue A, Toyofuku H, Jacquet C, Schlundt J. Listeria and listeriosis: Risk assessment as a new tool to unravel a multifaceted problem. Am. J. Infect. Control 29: 225–227 (2001)

    Article  CAS  Google Scholar 

  35. Gaya P, Saralegui C, Medina M. Occurrence of Listeria monocytogenes and other Listeria spp. in raw caprine milk. J. Dairy Sci. 79: 1936–1941 (1996)

    Article  CAS  Google Scholar 

  36. Yücel N, Cýtak S, Önder MO. Prevalence and antibiotic resistance of Listeria species in meat products in Ankara, Turkey. Food Microbiol. 22: 241–245 (2005)

    Article  Google Scholar 

  37. Nufer U, Stephan R, Tasara T. Growth characteristics of Listeria monocytogenes,L. welshimeri and L. innocua strains in both cultures and slice bologna-type product at 4 and 7 degrees C. Food Microbiol. 24: 444–451 (2007)

    Article  CAS  Google Scholar 

  38. Groves RD, Welshimer HJ. Separation of pathogenic from apathogenic Listeria monocytogenes by three in vitro reactions. J. Clin. Microbiol. 5: 559–563 (1977)

    CAS  Google Scholar 

  39. Hof H. Virulence of different strains of Listeria monocytogenes serovar 1/2a. Med. Microbiol. Immun. 173: 207–218 (1984)

    Article  CAS  Google Scholar 

  40. Geoffroy C, Gaillard J-L, Alouf JE, Berche P. Purification, characterization, and toxicity of the sulfhydryl-activated hemolysin listeriolysin O from Listeria monocytogenes. Infect. Immun. 55: 1641–1646 (1987)

    CAS  Google Scholar 

  41. Vázquez-Boland J-A, Dominguez L, Rodriguez-Ferri E-F, Suarez G. Purification and characterization of two Listeria ivanovii cytolysins, a sphingomyelinas C and a thiol-activated toxin (ivanolysin O). Infect. Immun. 57: 3928–3935 (1989)

    Google Scholar 

  42. Sheehan B, Kocks C, Dramsi S, Gouin E, Klarsfield, AD, Mengaud J, Cossart P. Molecular and genetic determinants of the Listeria monocytogenes infectious process. Curr. Top. Microbiol. Immun. 192: 187–216 (1994)

    CAS  Google Scholar 

  43. Vázquez-Boland J-A, Kocks C, Dramsi S, Geoffroy C, Mengaud J, Cossart P. Nucleotide sequence of the lecithinase operon of Listeria monocytogenes and possible role in cell-to-cell spread. Infec. Immun. 60: 219–230 (1992)

    Google Scholar 

  44. Poyart C, Abachin E, Razafimanantsoa I, Berche P. The zinc metalloprotease of Listeria monocytogenes is required for maturation of phosphatidylcholine phospholipase C: Direct evidence obtained by gene complementation. Infect. Immun. 61: 1576–1580 (1993)

    CAS  Google Scholar 

  45. Titball RW. Bacterial phospholipases C. Microbiol. Rev. 57: 347–366 (1993)

    CAS  Google Scholar 

  46. Raveneau J, Geoffroy C, Beretti JL, Gaillard JL, Alouf JE, Berche P. Reduced virulence of a Listeria monocytogenes phosphpholipase-deficient mutant obtained by transposon insertion into the zinc metalloprotease gene. Infect. Immun. 60: 916–921 (1992)

    CAS  Google Scholar 

  47. Barclay R, Threlfall DR, Leighton I. Separation and properties of the haemolysins and extracellular enzymes of Listeria monocytogenes. J. Med. Microbiol. 30: 119–127 (1989)

    Article  CAS  Google Scholar 

  48. Barclay R, Threlfall DR, Leighton I. Haemolysins and extracellular enzymes of Listeria monocytogenes and L. ivanovii. J. Med. Microbiol. 30: 111–118 (1989)

    Article  CAS  Google Scholar 

  49. Sword CP, Kingdon GC. Listeria monocytogenes toxin. pp. 357–377. In: Microbial toxins-bacterial protein toxins. Kadis S, Montie C, Ajl SJ (eds). Academic Press, London, UK (1971)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Abdel-Rhman Ismaiel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ismaiel, A.AR., Ali, A.ES. & Enan, G. Incidence of Listeria in Egyptian meat and dairy samples. Food Sci Biotechnol 23, 179–185 (2014). https://doi.org/10.1007/s10068-014-0024-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-014-0024-5

Keywords

Navigation