Skip to main content
Log in

Metabolic engineering strategies for the production of beneficial carotenoids in plants

  • Research Review
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Adequate consumption of carotenoids including lycopene, β-carotene, lutein, zeaxanthin, and astaxanthin have many benefits for human health. In plants, carotenoids are derived from isoprenoid precursors from the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway located in plastids. The MEP pathway is also required for the biosynthesis of chlorophyll, terpenoids, plant hormones, and other metabolites. Despite its complexity and difficulty, various strategies have been successfully used to improve the carotenoid biosynthesis in plants through metabolic engineering. Here, these metabolic engineering strategies are reviewed. In addition, the development of gene stacking technologies for carotenoid biosynthesis is evaluated. These technologies will expedite our efforts to bring the health benefits of carotenoids and other nutritional compounds to our diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tang G. Bioconversion of dietary provitamin A carotenoids to vitamin A in humans. Am. J. Clin. Nutr. 91: 1468S–1473S (2010)

    Article  CAS  Google Scholar 

  2. Sommer A. Vitamin A deficiency and clinical disease: An historical overview. J. Nutr. 138: 1835–1839 (2008)

    CAS  Google Scholar 

  3. West KP Jr. Extent of vitamin A deficiency among preschool children and women of reproductive age. J. Nutr. 132: 2857S–2866S (2002)

    CAS  Google Scholar 

  4. Carpentier S, Knaus M, Suh M. Associations between lutein, zeaxanthin, and age-related macular degeneration: An overview. Crit. Rev. Food Sci. 49: 313–326 (2009)

    Article  CAS  Google Scholar 

  5. Fassett RG, Coombes JS. Astaxanthin in cardiovascular health and disease. Molecules 17: 2030–2048 (2012)

    Article  CAS  Google Scholar 

  6. Mordente A, Guantario B, Meucci E, Silvestrini A, Lombardi E, Martorana GE, Giardina B, Böhm V. Lycopene and cardiovascular diseases: An update. Curr. Med. Chem. 18: 1146–1163 (2011)

    Article  CAS  Google Scholar 

  7. Lichtenthaler HK. Biosynthesis, accumulation, and emission of carotenoids, α-tocopherol, plastoquinone, and isoprene in leaves under high photosynthetic irradiance. Photosynth. Res. 92: 163–179 (2007)

    Article  CAS  Google Scholar 

  8. Okada K. The biosynthesis of isoprenoids and the mechanisms regulating it in plants. Biosci. Biotech. Bioch. 75: 1219–1225 (2011)

    Article  CAS  Google Scholar 

  9. Kuzuyama T, Seto H. Two distinct pathways for essential metabolic precursors for isoprenoid biosynthesis. P. Jpn. Acad. B -Phys. 88: 41–52 (2012)

    Article  CAS  Google Scholar 

  10. Vranová E, Coman D, Gruissem W. Structure and dynamics of the isoprenoid pathway network. Mol. Plant. 5: 318–333 (2012)

    Article  Google Scholar 

  11. Bick JA, Lange BM. Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: Unidirectional transport of intermediates across the chloroplast envelope membrane. Arch. Biochem. Biophys. 415: 146–154 (2003)

    Article  CAS  Google Scholar 

  12. Laule O, Fürholz A, Chang HS, Zhu T, Wang X, Heifetz PB, Gruissem W, Lange M. Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. P. Natl. Acad. Sci. USA 100: 6866–6871 (2003)

    Article  CAS  Google Scholar 

  13. Cazzonelli C. Carotenoids in nature: Insights from plants and beyond. Funct. Plant Biol. 38: 833–847 (2011)

    Article  CAS  Google Scholar 

  14. Kim J, DellaPenna D. Defining the primary route for lutein synthesis in plants: The role of Arabidopsis carotenoid β-ring hydroxylase CYP97A3. P. Natl. Acad. Sci. USA 103: 3474–3479 (2006)

    Article  CAS  Google Scholar 

  15. Misawa N. Carotenoid β-ring hydroxylase and ketolase from marine bacteria-promiscuous enzymes for synthesizing functional xanthophylls. Drugs 9: 757–771 (2011)

    Article  CAS  Google Scholar 

  16. Alvarez V, Rodríguez-Sáiz M, de la Fuente JL, Gudiña EJ, Godio RP, Martín JF, Barredo JL. The crtS gene of Xanthophyllomyces dendrorhous encodes a novel cytochrome-P450 hydroxylase involved in the conversion of β-carotene into astaxanthin and other xanthophylls. Fungal Genet. Biol. 4: 261–272 (2006)

    Article  Google Scholar 

  17. Schmidt I, Schewe H, Gassel S, Jin C, Buckingham J, Hümbelin M, Sandmann G, Schrader J. Biotechnological production of astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous. Appl. Microbiol. Biot. 89: 555–571 (2011)

    Article  CAS  Google Scholar 

  18. Cunningham FX Jr, Gantt E. Elucidation of the pathway to astaxanthin in the flowers of Adonis aestivalis. Plant Cell 23: 3055–3069 (2011)

    Article  CAS  Google Scholar 

  19. Fujisawa M, Misawa N. Enrichment of carotenoids in flaxseed by introducing a bacterial phytoene synthase gene. Methods Mol. Biol. 643: 201–211 (2010)

    Article  CAS  Google Scholar 

  20. Ducreux LJ, Morris WL, Hedley PE, Shepherd T, Davies HV, Millam S, Taylor MA. Metabolic engineering of high carotenoid potato tubers containing enhanced levels of β-carotene and lutein. J. Exp. Bot. 56: 81–89 (2005)

    CAS  Google Scholar 

  21. Fray RG, Grierson D. Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation, and co-suppression. Plant Mol. Biol. 22: 589–602 (1993)

    Article  CAS  Google Scholar 

  22. Gady AL, Vriezen WH, Van de Wal MH, Huang P, Bovy AG, Visser RG, Bachem CW. Induced point mutations in the phytoene synthase 1 gene cause differences in carotenoid content during tomato fruit ripening. Mol. Breeding 29: 801–812 (2012)

    Article  CAS  Google Scholar 

  23. Fraser PD, Enfissi EMA, Halket JM, Truesdale MR, Yu D, Gerrish C, Bramley PM. Manipulation of phytoene levels in tomato fruit: Effects on isoprenoids, plastids, and intermediary metabolism. Plant Cell 19: 3194–3211 (2007)

    Article  CAS  Google Scholar 

  24. Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I. Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287: 303–305 (2000)

    Article  CAS  Google Scholar 

  25. Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R. Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat. Biotechnol. 23: 482–487 (2005)

    Article  CAS  Google Scholar 

  26. Diretto G, Al-Babili S, Tavazza R, Papacchioli V, Beyer P, Giuliano G. Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS One 2: e350 (2007)

    Article  Google Scholar 

  27. Diretto G, Al-Babili S, Tavazza R, Scossa F, Papacchioli V, Migliore M, Beyer P, Giuliano G. Transcriptional-metabolic networks in β-carotene-enriched potato tubers: The long and winding road to the Golden phenotype. Plant Physiol. 154: 899–912 (2010)

    Article  CAS  Google Scholar 

  28. Giuliano G, Tavazza R, Diretto G, Beyer P, Taylor MA. Metabolic engineering of carotenoid biosynthesis in plants. Trends Biotechnol. 26: 139–145 (2008)

    Article  CAS  Google Scholar 

  29. Potrykus I. Regulation must be revolutionized. Nature 466: 561 (2010)

    Article  CAS  Google Scholar 

  30. Zhu C, Naqvi S, Breitenbach J, Sandmann G, Christou P, Capell T. Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. P. Natl. Acad. Sci. USA 105: 18232–18237 (2008)

    Article  CAS  Google Scholar 

  31. Naqvi S, Zhu C, Farre G, Sandmann G, Capell T, Christou P. Synergistic metabolism in hybrid corn indicates bottlenecks in the carotenoid pathway and leads to the accumulation of extraordinary levels of the nutritionally important carotenoid zeaxanthin. Plant Biotechnol. J. 9: 384–393 (2011)

    Article  CAS  Google Scholar 

  32. Diretto G, Tavazza R, Welsch R, Pizzichini D, Mourgues F, Papacchioli V, Beyer P, Giuliano G. Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase. BMC Plant Biol. 6: 13 (2006)

    Article  Google Scholar 

  33. Römer S, Lübeck J, Kauder F, Steiger S, Adomat C, Sandmann G. Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation. Metab. Eng. 4: 263–272 (2002)

    Article  Google Scholar 

  34. Zhong YJ, Huang JC, Liu J, Li Y, Jiang Y, Xu ZF, Sandmann G, Chen F. Functional characterization of various algal carotenoid ketolases reveals that ketolating zeaxanthin efficiently is essential for high production of astaxanthin in transgenic Arabidopsis. J. Exp. Bot. 62: 3659–3669 (2011)

    Article  CAS  Google Scholar 

  35. Huang J, Zhong Y, Sandmann G, Liu J, Chen F. Cloning and selection of carotenoid ketolase genes for the engineering of highyield astaxanthin in plants. Planta 236: 691–699 (2012)

    Article  CAS  Google Scholar 

  36. Hasunuma T, Miyazawa S, Yoshimura S, Shinzaki Y, Tomizawa K, Shindo K, Choi SK, Misawa N, Miyake C. Biosynthesis of astaxanthin in tobacco leaves by transplastomic engineering. Plant J. 55: 857–868 (2008)

    Article  CAS  Google Scholar 

  37. Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature 21: 796–802 (2003)

    Article  CAS  Google Scholar 

  38. Yoon SH, Lee SH, Das A, Ryu HK, Jang HJ, Kim JY, Oh DK, Keasling JD, Kim SW. Combinatorial expression of bacterial whole mevalonate pathway for the production of β-carotene in E. coli. J. Biotechnol. 140: 218–226 (2009)

    Article  CAS  Google Scholar 

  39. Kumar S, Hahn FM, Baidoo E, Kahlon TS, Wood DF, McMahan CM, Cornish K, Keasling JD, Daniell H, Whalen MC. Remodeling the isoprenoid pathway in tobacco by expressing the cytoplasmic mevalonate pathway in chloroplasts. Metab. Eng. 14: 19–28 (2012)

    Article  CAS  Google Scholar 

  40. Fujisawa M, Takita E, Harada H, Sakurai N, Suzuki H, Ohyama K, Shibata D, Misawa N. Pathway engineering of Brassica napus seeds using multiple key enzyme genes involved in ketocarotenoid formation. J. Exp. Bot. 60: 1319–1332 (2009)

    Article  CAS  Google Scholar 

  41. Ha SH, Liang YS, Jung H, Ahn MJ, Suh SC, Kweon SJ, Kim DH, Kim YM, Kim JK. Application of two bicistronic systems involving 2A and IRES sequences to the biosynthesis of carotenoids in rice endosperm. Plant Biotechnol. J. 8: 928–938 (2010)

    Article  CAS  Google Scholar 

  42. Farré G, Naqvi S, Sanahuja G, Bai C, Zorrilla-López U, Rivera SM, Canela R, Sandman G, Twyman RM, Capell T, Zhu C, Christou P. Combinatorial genetic transformation of cereals and the creation of metabolic libraries for the carotenoid pathway. Methods Mol. Biol. 847: 419–435 (2012)

    Article  Google Scholar 

  43. Farré G, Bai C, Twyman RM, Capell T, Christou P, Zhu C. Nutritious crops producing multiple carotenoids-a metabolic balancing act. Trends Plant Sci. 16: 532–540 (2011)

    Article  Google Scholar 

  44. Mattoo AK, Shukla V, Fatima T, Handa AK, Yachha SK. Genetic engineering to enhance crop-based phytonutrients (nutraceuticals) to alleviate diet-related diseases. Adv. Exp. Med. Biol. 698: 122–143 (2011)

    Article  Google Scholar 

  45. Ye VM, Bhatia SK. Pathway engineering strategies for production of beneficial carotenoids in microbial hosts. Biotechnol. Lett. 34: 1405–1414 (2012)

    Article  CAS  Google Scholar 

  46. Ye VM, Bhatia SK. Metabolic engineering for the production of clinically important molecules: ω-3 Fatty acids, artemisinin, and taxol. Biotechnol. J. 7: 20–33 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujata K. Bhatia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhatia, S.K., Ye, V.M. Metabolic engineering strategies for the production of beneficial carotenoids in plants. Food Sci Biotechnol 21, 1511–1517 (2012). https://doi.org/10.1007/s10068-012-0201-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-012-0201-3

Keywords

Navigation