Skip to main content
Log in

Blueberry protects LPS-stimulated BV-2 microglia through inhibiting activities of p38 MAPK and ERK1/2

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The effects of blueberry extract (BE) were investigated on activities of p38 mitogen-activated protein kinase (MAPK) and extracellular extracellular signal regulated kinase 1/2 (ERK1/2) in mouse BV-2 microglia stimulated lipopolysaccharide (LPS). BV-2 microglia were cultured for 24 h in the presence of 1 μg/mL LPS either with or without BE preincubation for 0, 1, and 12 h. BE relieved repression of cell proliferation, and reduced cell death. These alterations caused by BE addition accompanied reduction of radical oxygen species (ROS). There were also significant decreases in the levels of both transcripts, and proteins of inducible nitric oxide synthase (iNOS) and peroxiredoxin 1 (Prx1) genes in the BE-treated cells, suggesting that BE inhibit the ROS-induced gene expression. The antioxidant effects of BE appeared to involve p38 MAPK and ERK1/2 signaling pathways since BE reduced both kinase activities by inhibiting phosphorylation. Taken these results together, BE protects LPS-stimulated BV-2 microglia by reducing cell death, ROS accumulation, and activities of p38 MAPK and ERK1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8: 752–758 (2005)

    Article  CAS  Google Scholar 

  2. Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308: 1314–1318 (2005)

    Article  CAS  Google Scholar 

  3. Garden GA, Moller T. Microglia biology in health and disease. J. Neuroimmune Pharml. 1: 127–137 (2006)

    Article  Google Scholar 

  4. Palsson-McDermott EM, O’Neill LA. Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology 113: 153–162 (2004)

    Article  CAS  Google Scholar 

  5. Lehnardt S, Massillon L, Follett P, Jensen FE, Ratan R, Rosenberg PA, Volpe JJ, Vartanian T. Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. P. Natl. Acad. Sci. USA 100: 8514–8519 (2003)

    Article  CAS  Google Scholar 

  6. Diplock AT. Antioxidant nutrients and disease prevention. Mol. Aspects Med. 15: 293–376 (1994)

    Article  CAS  Google Scholar 

  7. Zhu H, Santo A, Li Y. The antioxidant enzyme peroxiredoxin and its protective role in neurological disorders. Exp. Biol. Med. 237: 143–149 (2012)

    Article  CAS  Google Scholar 

  8. Kim SU, Hwang CN, Sun HN, Jin MH, Han YH, Lee H, Kim JM, Kim SK, Yu DY, Lee DH, Lee SH. Peroxiredoxin 1 is an indicator of microglia activation and protects against hydrogen peroxidemediated microglial death. Biol. Pharm. Bull. 31: 820–825 (2008)

    Article  CAS  Google Scholar 

  9. Sun HN, Kim SU, Huang SM, Kim JM, Park YH, Kim SH, Yang HY, Chung KJ, Lee TH, Choi HS, Min JS, Park MK, Kim SK, Lee SR, Chang KT, Lee SH, Yu DY, Lee DS. Microglial peroxiredoxin V acts as an inducible anti-inflammatory antioxidant through cooperation with redox signaling cascades. J. Neurochem. 114: 39–50 (2010)

    CAS  Google Scholar 

  10. Joseph JA, Shukitt-Hale B, Casadesus G. Reversing the deleterious effects of aging on neuronal communication, and behavior: Beneficial properties of fruit polyphenolic compounds. Am. J. Clin. Nutr. 81(Suppl1): 313S–316S (2005)

    CAS  Google Scholar 

  11. Rice-Evans CA, Miller NJ. Antioxidant activities of flavonoids as bioactive components of food. Biochem. Soc. T. 24: 790–794 (1996)

    CAS  Google Scholar 

  12. Giacalone M, Di Sacco F, Traupe I, Topini R, Forfori F, Giunta F. Antioxidant and neuroprotective properties of blueberry polyphenols: A critical review. Nutr. Neurosci. 14: 119–125 (2011)

    Article  CAS  Google Scholar 

  13. Gordillo G, Fang H, Khanna S, Harper J, Phillips G, Sen CK. Oral administration of blueberry inhibits angiogenic tumor growth and enhances survival of mice with endothelial cell neoplasm. Antioxid. Redox Sign. 11: 47–58 (2009)

    Article  CAS  Google Scholar 

  14. Yi W, Fischer J, Krewer G, Akoh CC. Phenolic compounds from blueberries can inhibit colon cancer cell proliferation and induce apoptosis. J. Agr. Food Chem. 53: 7320–7329 (2005)

    Article  CAS  Google Scholar 

  15. Lau FC, Donna FB, James AJ. Inhibitory effects of blueberry extract on the production of inflammatory mediators in lipopolysaccharideactivated BV-2 microglia. J. Neurosci. Res. 85: 1010–1017 (2007)

    Article  CAS  Google Scholar 

  16. Blasi E, Barluzzi R, Bocchini V, Mazzolla R, Bistoni F. Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J. Neuroimmunol. 27: 229–237 (1990)

    Article  CAS  Google Scholar 

  17. Reis K, Halldin J, Fernaeus S, Pettersson C, Land T. NADPH oxidase inhibitor diphenyliodonium abolishes lipopolysaccharide induced down regulation of transferrin receptor expressions in N2a and BV-2 cell. J. Neurosci. Res. 84: 1047–1052 (2006)

    Article  CAS  Google Scholar 

  18. McGuire SO, Sortwell CE, Shukitt-Hale B, Joseph JA, Hejna MJ, Collier TJ. Dietary supplementation with blueberry extract improves survival of transplanted dopamine neurons. Nutr. Neurosci. 9: 251–258 (2006)

    Article  CAS  Google Scholar 

  19. Roy AM, Baliga MS, Katiyar SK. Epigallocatechin-3-gallate induces apoptosis in estrogen receptor-negative human breast carcinoma cells via modulation in protein expression of p53, and Bax, and caspase-3 activation. Mol. Cancer Ther. 4: 81–90 (2005)

    CAS  Google Scholar 

  20. Adams LS, Phung Sl, Yee N, Seeram NP, Li L, Chen S. Blueberry phytochemicals inhibit growth and metastatic potential of MDAMB-231 breast cancer cells through modulation of the phosphatidylinositol 3-kinase pathway. Cancer Res. 70: 3594–3605 (2010)

    Article  CAS  Google Scholar 

  21. Hurst RD, Wells RW, Hurst SM, McGhie TK, Cooney JM, Jensen DJ. Blueberry fruit polyphenolics suppress oxidative stress-induced skeletal muscle cell damage in vitro. Mol. Nutr. Food Res. 54: 353–363 (2010)

    Article  CAS  Google Scholar 

  22. Kristo AS, Kalea AZ, Schuschke DA, Klimis-Zacas DJ. A wild blueberry-enriched diet (Vaccinium angustifolium) improves vascular tone in the adult spontaneously hypertensive rat. J. Agr. Food Chem. 58: 11600–11605 (2010)

    Article  CAS  Google Scholar 

  23. Jeong K, Shin YC, Park S, Park JS, Kim N, Um JY, Go H, Sun S, Lee S, Park W, Choi Y, Song Y, Kim G, Jeon C, Park J, Lee K, Bang O, Ko SG. Ethanol extract of Scutellaria baicalensis Georgi prevents oxidative damage and neuroinflammation and memorial impairments in artificial senescense mice. J. Biomed. Sci. 18: 14 (2011)

    Article  CAS  Google Scholar 

  24. Rao YK, Fang SH, Tzeng YM. Inhibitory effects of the flavonoids isolated from Waltheria indica on the production of NO, TNF-α, and IL-12 in activated macrophages. Biol. Pharm. Bull. 28: 912–915 (2005)

    Article  CAS  Google Scholar 

  25. Chen YC, Shen SC, Chen LG, Lee TJ, Yang LL. Wogonin, baicalin, and baicalein inhibition of inducible nitric oxide synthase and cyclooxygenase-2 gene expressions induced by nitric oxide synthase inhibitors and lipopolysaccharide. Biochem. Pharmacol. 61: 1417–1427 (2001)

    Article  CAS  Google Scholar 

  26. Ilieva I, Ohgami K, Shiratori K, Koyama Y, Yoshida K, Kase S, Kitamei H, Takemoto Y, Yazawa K, Ohno S. The effects of Ginkgo biloba extract on lipopolysaccharide-induced inflammation in vitro, and in vivo. Exp. Eye Res. 79: 181–187 (2004)

    Article  CAS  Google Scholar 

  27. Walker G, Pfeilschifter J, Kunz D. Mechanisms of suppression of inducible nitric-oxide synthase (iNOS) expression in interferon (IFN)-γ-stimulated RAW 264.7 cells by dexamethasone: Evidence for glucocorticoid-induced degradation of iNOS protein by calpain as a key step in post-transcriptional regulation. J. Biol. Chem. 272: 16679–16687 (1996)

    Article  Google Scholar 

  28. Vuong T, Matar C, Ramassamy C, Haddad PS. Biotransformed blueberry juice protects neurons from hydrogen peroxide-induced oxidative stress, and mitogen-activated protein kinase pathway alterations. Brit. J. Nutr. 104: 656–663 (2010)

    Article  CAS  Google Scholar 

  29. Vauzour D, Vafeiadou K, Rodriguez-Mateos A, Rendeiro C, Spencer JPE. The neuroprotective potential of flavonoids: A multiplicity of effects. Genes Nutr. 3: 115–126 (2008)

    Article  CAS  Google Scholar 

  30. Horvath RJ, Nutile-McMenemy N, Alkaitis MS, De Leo JA. Differential migration, LPS-induced cytokine, chemokine, and NO expression in immortalized BV-2, and HAPI cell lines, and primary microglial cultures. J. Neurochem. 107: 557–569 (2008)

    Article  CAS  Google Scholar 

  31. Wu X, Gu L, Prior RL, Mckay S. Characterization of anthocyanins and proanthocyanidins in some cultivars of ribes, aronia, and sambucus, and their antioxidant capacity. J. Agr. Food Chem. 52: 7846–7856 (2004)

    Article  CAS  Google Scholar 

  32. Schmidt BM, Erdman JW Jr, Lila MA. Differential effects of blueberry proanthocyanidins on androgen sensitive and insensitive human prostate cancer cell lines. Cancer Lett. 231: 240–246 (2006)

    Article  CAS  Google Scholar 

  33. Joseph JA, Shukitt-Hale B, Brewer GJ, Weikel KA, Kalt W, Fisher DR. Differential protection among fractionated blueberry polyphenolic families against DA-, A{ie1201-1}, and LPS-induced decrements in Ca2+ buffering in primary hippocampal cells. J. Agr. Food Chem. 58: 8196–8204 (2010)

    Article  CAS  Google Scholar 

  34. Bagchi D, Sen CK, Bagchi M, Atalay M. Anti-angiogenic, antioxidant, and anti-carcinogenic properties of a novel anthocyanin-rich berry extract formula. Biochemistry -Moscow+ 69: 75–80 (2004)

    Article  CAS  Google Scholar 

  35. Kahkonen MP, Heinamaki J, Ollilainen V, Heinonen M. Berry anthocyanins: Isolation, identification, and antioxidant activities. J. Sci. Food Agr. 83: 1403–1411 (2003)

    Article  Google Scholar 

  36. Zafra-Stone S, Yasmin T, Bagchi M, Chatterjee A, Vinson JA, Bagchi D. Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol. Nutr. Food Res. 51: 675–683 (2007)

    Article  CAS  Google Scholar 

  37. Trujillo E, Davis C, Milner J. Nutrigenomics, proteomics, metabolomics, and the practice of dietetics. J. Am. Diet. Assoc. 106: 403–413 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Ho Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, S.S., Lee, D.H. & Lee, S.H. Blueberry protects LPS-stimulated BV-2 microglia through inhibiting activities of p38 MAPK and ERK1/2. Food Sci Biotechnol 21, 1195–1201 (2012). https://doi.org/10.1007/s10068-012-0156-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-012-0156-4

Keywords

Navigation