Skip to main content
Log in

Fractionation and characterization of ɛ-poly-l-lysine from Streptomyces albulus CGMCC 1986

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

ɛ-Poly-l-lysine (ɛ-PLL) produced by Streptomyces albulus CGMCC 1986 was fractionated using ultra-filtration technique with 2 and 5 kDa cut-offs of membrane. The number-average molecular weight of each fraction was determined by 1H nuclear magnetic resonance (NMR) method. The number-average molecular weights of the cutoffs of 5 and 2 kDa and the filtrate are 4,230.95, 3,687.80, and 1,900.82 Da, respectively. 1H NMR indicates the chemical shifts of α-H, β-H, γ-H, δ-H, and ɛ-H are very similar to all the fractions. Fourier transform-infrared (FTIR) spectra showed that the ɛ-PLL solid samples obtained by freeze-drying at pH 5 with molecular weights higher than 2 kDa take on a β-turn conformation, however, the fraction with molecular weight smaller than 2 kDa adopts random coil structure. The antibacterial test proved that the fraction between 2 and 5 kDa of membranes behaves the highest antibacterial activity than other fractions for the test strains of Staphylococcus aureus, Micrococcus luteus, Bacillus subtilis, Escherichia coli, and Shigella.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shima S, Sakai H. Polylysine produced by Streptomyces. Agr. Biol. Chem. Tokyo 41: 1807–1809 (1977)

    CAS  Google Scholar 

  2. Shima S, Matsuoka H, Iwamoto T, Sakai H. Antimicrobial action of ɛ-poly-l-lysine. J. Antibiot. 37: 1449–1455 (1984)

    CAS  Google Scholar 

  3. Hiraki J. ɛ-Polylysine: Its development and utilization. Fine Chem. 29: 18–25 (2000)

    Google Scholar 

  4. Yoshida T, Nagasawa T. ɛ-Poly-l-lysine: Microbial production, biodegradation, and application potential. Appl. Microbiol. Biot. 62: 21–26 (2003)

    Article  CAS  Google Scholar 

  5. Geornaras I, Sofos JN. Activity of ɛ-polylysine against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes. J. Food Sci. 70: M404–M408 (2005)

    Article  CAS  Google Scholar 

  6. Hiraki J, Ichikawa T, Ninomiya S, Seki H, Uohama K, Seki H, Kimura S, Yanagimoto Y, Barnett JW. Use of ADME studies to confirm the safety of ɛ-polylysine as a preservative in food. Regul. Toxicol. Pharm. 37: 328–340 (2003)

    Article  CAS  Google Scholar 

  7. Shih IL, Shen MH, Van YT. Microbial synthesis of poly (ɛ-lysine) and its various applications. Bioresource Technol. 97: 1148–1159 (2006)

    Article  CAS  Google Scholar 

  8. Ho YT, Ishizaki S, Tanaka M. Improving emulsifying activity of ɛ-polylysine by conjugation with dextran through the Maillard reaction. Food Chem. 68: 449–455 (2000)

    Article  CAS  Google Scholar 

  9. Eom KD, Park SM, Tran HD, Kim MS, Yu RN, Hoon Y. Dendritic α,ɛ-poly(l-lysine)s as delivery agents for antisense oligonucleotides. Pharm. Res. 24: 1581–1589 (2007)

    Article  CAS  Google Scholar 

  10. Tsujita T, Takaichi H, Takaku T, Aoyama S, Hiraki J. Antiobesity action of ɛ-polylysine, a potent inhibitor of pancreatic lipase. J. Lipid Res. 44: 1852–1858 (2006)

    Article  CAS  Google Scholar 

  11. Salick DA, Kretsinger JK, Pochan DJ, Schneider JP. Inherent antibacterial activity of a peptide-based β-hairpin hydrogel. J. Am. Chem. Soc. 129: 14793–14799 (2007)

    Article  CAS  Google Scholar 

  12. Sant V, Leroux JC. pH-Sensitive block copolymers for pharmaceutical compositions. U.S. Patent 7,094,810 (2006)

  13. Kibat PG, Igari Y, Wheatley MA, Eisen HN, Langer R. Enzymatically activated microencapsulated liposomes can provide pulsatile drug release. FASEB J. 4: 2533–2539 (1990)

    CAS  Google Scholar 

  14. Arenas-Gamboa AM, Ficht TA, Kahl-Mcdonagh MM, Rice-Ficht AC. Immunization with a single dose of a microencapsulated Brucella melitensis mutant enhances protection against wild-type challenge. Infect. Immun. 76: 2448–2455 (2008)

    Article  CAS  Google Scholar 

  15. Nishikawa M, Ogawa K. Distribution of microbes producing antimicrobial ɛ-poly-l-lysine polymers in soil microflora determined by a novel method. Appl. Environ. Microb. 68: 3575–3581 (2002)

    Article  CAS  Google Scholar 

  16. Hirohara H, Takehara M, Saimura M, Ikezaki A, Miyamoto M. Biosynthesis of poly(ɛ-l-lysine)s in two newly isolated strains of Streptomyces sp. Appl. Microbiol. Biot. 73: 321–331 (2006)

    Article  CAS  Google Scholar 

  17. Ouyang J, Xu H, Li S, Zhu H, Chen W, Zhou J, Wu Q, Xu L, Ouyang P. Production of ɛ-poly-l-lysine by newly isolated Kitasatospora sp. PL6-3. Biotechnol. J. 1: 1459–1463 (2006)

    Article  CAS  Google Scholar 

  18. Espartero JL, Rashkov I, Li SM, Manolova N, Vert M. NMR analysis of low molecular weight poly(lactic acid)s. Macromolecules 29: 3535–3539 (1996)

    Article  CAS  Google Scholar 

  19. Nishikawa M. Molecular mass control using polyanionic cyclodextrin derivatives for the ɛ-poly-l-lysine biosynthesis by Streptomyces. Enzyme Microb. Tech. 45: 295–298 (2009)

    Article  CAS  Google Scholar 

  20. Hayakawa K, Murata H, Satake I. Conformational change of poly (l-lysine) and poly (l-ornithine) and cooperative binding of sodium alkanesulfonate surfactants with different chain length. Colloid. Polym. Sci. 268: 1044–1051 (1990)

    Article  CAS  Google Scholar 

  21. Dzwolak W, Muraki T, Kato M, Taniguchi Y. Chain-length dependence of α-helix to β-sheet transition in polylysine: Model of protein aggregation studied by temperature-tuned FTIR spectroscopy. Biopolymers 73: 463–469 (2004)

    Article  CAS  Google Scholar 

  22. Jonsson AS, Tragardh G. Ultrafiltration applications. Desalination 77: 135–179 (1990)

    Google Scholar 

  23. Itzhaki RF. Colorimetric method for estimating polylysine and polyargine. Anal. Biochem. 50: 569–574 (1972)

    Article  CAS  Google Scholar 

  24. Shima S, Sakai H. Poly-l-lysine produced by Streptomyces. Part III. Chemical studies. Agr. Biol. Chem. Tokyo 45: 2503–2508 (1981)

    CAS  Google Scholar 

  25. Shih IL, Shen MH. Optimization of cell growth and poly(ɛ-lysine) production in batch and fed-batch cultures by Streptomyces albulus IFO 14147. Process Biochem. 41: 1644–1649 (2006)

    Article  CAS  Google Scholar 

  26. Coakley WT, Hewisonv LA, Tilley D. Interfacial instability and the agglutination of erythrocytes by polylysine. Eur. Biophys. J. 13: 123–130 (1985)

    Article  CAS  Google Scholar 

  27. Turer NG, Ferry L, Price M, Cullander C, Guy RH. Iontophoresis of poly-l-lysines: The role of molecular weight? Pharm. Res. 14: 1322–1331 (1997)

    Article  Google Scholar 

  28. Lukasz S, Sylwia P, Bogusława CM. FTIR-ATR investigations of an α-helix to β-sheet conformational transition in poly(l-lysine). J. Mol. Liq. 141: 155–159 (2008)

    Article  CAS  Google Scholar 

  29. Schwieger C, Blume A. Interaction of poly (l-lysines) with negatively charged membranes: An FT-IR and DSC study. Eur. Biophys. J. 36: 437–450 (2007)

    Article  CAS  Google Scholar 

  30. Rozenberg M, Shoham G. FTIR spectra of solid poly-l-lysine in the stretching NH mode range. Biophy. Chem. 125: 166–171 (2007)

    Article  CAS  Google Scholar 

  31. Mauerer A, Lee G. Changes in the amide I FT-IR bands of poly-l-lysine on spray-drying from α-helix, β-sheet, or random coil conformations. Eur. J. Pharm. Biopharm. 62: 131–142 (2006)

    Article  CAS  Google Scholar 

  32. Shanmugam G, Polavarapu PL. Concentration and dehydration dependent structural transitions in poly-l-lysine. J. Mol. Struct. 890: 144–149 (2008)

    Article  CAS  Google Scholar 

  33. Goormaghtigh E, Cabiaux V, Ruyschaert JM. Physicochemical methods in the study of biomembranes. pp. 405–450. In: Subcellular Biochemistry. Herwiq JH, Gregory BR (eds). Plenum Press, New York, NY, USA (1994)

    Google Scholar 

  34. Kakiuchi K, Tsuboi A. Association of poly-(l-lysine) homologues in sodium carbonate solution. Colloid. Polym. Sci. 268: 544–551 (1990)

    Article  CAS  Google Scholar 

  35. Maeda S, Kunimoto KK, Sasaki C, Kuwae A, Hanai K. Characterization of microbial poly(ɛ-l-lysine) by FT-IR, Raman, and solid state 13C NMR spectroscopies. J. Mol. Struct. 655: 149–155 (2003)

    Article  CAS  Google Scholar 

  36. Pouny Y, Rapaport D, Mor A, Nicolas P, Shai Y. Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry 31: 12416–12423 (1992)

    Article  CAS  Google Scholar 

  37. Ehrenstein G, Lecar H. Electrically gated ionic channels in lipid bilayers. Q. Rev. Biophys. 10: 1–34 (1977)

    Article  CAS  Google Scholar 

  38. Ringstad L, Kacprzyk L, Schmidtchen A, Malmsten M. Effects of topology, length, and charge on the activity of a kininogen-derived peptide on lipid membranes and bacteria. Biochim. Biophys. Acta 1768: 715–727 (2007)

    Article  CAS  Google Scholar 

  39. Fernandez DI, Gehman JD, Separovic F. Membrane interactions of antimicrobial peptides from Australian frogs. Biochim. Biophys. Acta 1788: 1630–1638 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiru Jia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, S., Fan, B., Dai, Y. et al. Fractionation and characterization of ɛ-poly-l-lysine from Streptomyces albulus CGMCC 1986. Food Sci Biotechnol 19, 361–366 (2010). https://doi.org/10.1007/s10068-010-0051-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-010-0051-9

Key words

Navigation