Skip to main content

Advertisement

Log in

Potential alleviation of bone mineral density loss with Janus kinase inhibitors in rheumatoid arthritis

  • ORIGINAL ARTICLE
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Objective

Rheumatoid arthritis (RA) is characterized by localized bone loss, general osteoporosis and increased fracture risks. Tumour necrosis factor inhibitors (TNFi), non-tumour necrosis factor inhibitors (non-TNFi) biologic, Janus kinase inhibitors (JAKi) had shown the suppression effects to osteoclast activation and improvement of bone mineral density (BMD). Anti-cyclic citrullinated peptide antibody (ACPA) is associated with osteoclast activation and the resultant bone loss. However, few studies have compared BMD changes among patients with RA treated with targeted therapies that have different mechanisms of action.

Methods

This retrospective study recruited patients with RA who had undergone BMD testing twice. Changes in the BMD were compared using the generalized estimating equation (GEE) in treatment groups that received conventional synthetic disease-modifying anti-rheumatic drugs (csDMARDs), TNFi, non-TNFi biologics, and JAKi.

Results

In total, 362 patients with RA were enrolled (csDMARDs, n = 153, TNFi, n = 71, non-TNFi biologics, n = 108, JAKi, n = 30). We observed greater changes in femoral BMD (left, 0.06, 95% CI 0.01–0.12, p = 0.016; right, 0.09, 95% CI 0.04–0.15, p = 0.001 by GEE) following JAKi treatment as compared with other treatments. Compared to the ACPA-negative group, patients with ACPA positivity exhibited greater improvement in the femoral BMD (left, 0.09, 95% CI 0.02–0.15, p = 0.008; right, 0.11, 95% CI 0.05–0.18, p = 0.001).

Conclusion

Compared to other targeted therapies, JAKi might exert a more potent effect to prevent BMD loss, specifically in ACPA-positive patients with RA, and could be a potential therapeutic option to mitigate generalized bone loss.

Key Points

•JAKi therapy inhibits systemic bone loss in patients with RA.

•ACPA-positive RA patients exhibited a greater BMD improvement than ACPA-negative RA patients.

•JAKi might more potently prevent BMD decline than conventional synthetic or biological DMARDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data underlying this article will be shared on reasonable request to the corresponding author.

References

  1. Raterman HG, Bultink IE, Lems WF (2020) Osteoporosis in patients with rheumatoid arthritis: an update in epidemiology, pathogenesis, and fracture prevention. Expert Opin Pharmacother 21:1725–1737. https://doi.org/10.1080/14656566.2020.1787381

    Article  PubMed  Google Scholar 

  2. Wade SW, Strader C, Fitzpatrick LA, Anthony MS, O’Malley CD (2014) Estimating prevalence of osteoporosis: examples from industrialized countries. Arch Osteoporos 9:182. https://doi.org/10.1007/s11657-014-0182-3

    Article  CAS  PubMed  Google Scholar 

  3. Haugeberg G, Uhlig T, Falch JA, Halse JI, Kvien TK (2000) Bone mineral density and frequency of osteoporosis in female patients with rheumatoid arthritis: results from 394 patients in the Oslo County Rheumatoid Arthritis register. Arthritis Rheum 43:522–530. https://doi.org/10.1002/1529-0131(200003)43:3%3C522::aid-anr7%3E3.0.co;2-y

    Article  CAS  PubMed  Google Scholar 

  4. Hauser B, Riches PL, Wilson JF, Horne AE, Ralston SH (2014) Prevalence and clinical prediction of osteoporosis in a contemporary cohort of patients with rheumatoid arthritis. Rheumatology (Oxford) 53:1759–1766. https://doi.org/10.1093/rheumatology/keu162

    Article  CAS  PubMed  Google Scholar 

  5. Jin S, Hsieh E, Peng L et al (2018) Incidence of fractures among patients with rheumatoid arthritis: a systematic review and meta-analysis. Osteoporos Int 29:1263–1275. https://doi.org/10.1007/s00198-018-4473-1

    Article  CAS  PubMed  Google Scholar 

  6. Revu S, Neregård P, afKlint E, Korotkova M, Catrina AI (2013) Synovial membrane immunohistology in early-untreated rheumatoid arthritis reveals high expression of catabolic bone markers that is modulated by methotrexate. Arthritis Res Ther 15:R205. https://doi.org/10.1186/ar4398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hensvold AH, Joshua V, Li W et al (2015) Serum RANKL levels associate with anti- citrullinated protein antibodies in early untreated rheumatoid arthritis and are modulated following methotrexate. Arthritis Res Ther 17:239. https://doi.org/10.1186/2Fs13075-015-0760-9

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gulyás K, Horváth Á, Végh E et al (2020) Effects of 1-year anti-TNF-α therapies on bone mineral density and bone biomarkers in rheumatoid arthritis and ankylosing spondylitis. Clin Rheumatol 39:167–175. https://doi.org/10.1007/s10067-019-04771-3

    Article  PubMed  Google Scholar 

  9. Hamar A, Szekanecz Z, Pusztai A et al (2021) Effects of one-year tofacitinib therapy on bone metabolism in rheumatoid arthritis. Osteoporos Int 32:1621–1629. https://doi.org/10.1007/s00198-021-05871-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen YM, Chen HH, Huang WN et al (2017) Tocilizumab potentially prevents bone loss in patients with anticitrullinated protein antibody-positive rheumatoid arthritis. Plos One 12:e0188454. https://doi.org/10.1371/journal.pone.0188454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wheater G, Elshahaly M, Naraghi K, Tuck SP, Datta HK, van Laar JM (2018) Changes in bone density and bone turnover in patients with rheumatoid arthritis treated with rituximab, results from an exploratory, prospective study. Plos One 13:e0201527. https://doi.org/10.1371/journal.pone.0201527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tada M, Inui K, Sugioka Y, Mamoto K, Okano T, Koike T (2018) Abatacept might increase bone mineral density at femoral neck for patients with rheumatoid arthritis in clinical practice: AIRTIGHT study. Rheumatol Int 38:777–784. https://doi.org/10.1007/s00296-017-3922-z

    Article  CAS  PubMed  Google Scholar 

  13. Amkreutz JAMP, de Moel EC, Theander L et al (2021) Association between bone mineral density and autoantibodies in patients with rheumatoid arthritis. Arthritis Rheumatol 73:921–930. https://doi.org/10.1002/art.41623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Krieckaert CL, Nurmohamed MT, Wolbink G, Lems WF (2013) Changes in bone mineral density during long-term treatment with adalimumab in patients with rheumatoid arthritis: a cohort study. Rheumatology (Oxford) 52:547–553. https://doi.org/10.1093/rheumatology/kes320

    Article  CAS  PubMed  Google Scholar 

  15. Fleischmann RM, Genovese MC, Enejosa JV et al (2019) Safety and effectiveness of upadacitinib or adalimumab plus methotrexate in patients with rheumatoid arthritis over 48 weeks with switch to alternate therapy in patients with insufficient response. Ann Rheum Dis 78:1454–1462. https://doi.org/10.1136/annrheumdis-2019-215764

    Article  CAS  PubMed  Google Scholar 

  16. Hochberg MC, Chang RW, Dwosh I, Lindsey S, Pincus T, Wolfe F (1992) The American College of Rheumatology 1991 revised criteria for the classification of global functional status in rheumatoid arthritis. Arthritis Rheum 35:498–502. https://doi.org/10.1002/art.1780350502

    Article  CAS  PubMed  Google Scholar 

  17. Aletaha D, Neogi T, Silman AJ et al (2010) 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum 62:2569–2581. https://doi.org/10.1002/art.27584

    Article  PubMed  Google Scholar 

  18. Fransen J, Creemers MC, Van Riel PL (2004) Remission in rheumatoid arthritis: agreement of the disease activity score (DAS28) with the ARA preliminary remission criteria. Rheumatology (Oxford) 43:1252–1255. https://doi.org/10.1093/rheumatology/keh297

    Article  CAS  PubMed  Google Scholar 

  19. World Health Organization (2007) Assessment of osteoporosis at the primary health care level. WHO, Geneva (www.who.int/chp/topics/rheumatic/en/index.html)

  20. Soós B, Szentpétery Á, Raterman HG, Lems WF, Bhattoa HP, Szekanecz Z (2022) Effects of targeted therapies on bone in rheumatic and musculoskeletal diseases. Nat Rev Rheumatol 18:249–257. https://doi.org/10.1038/s41584-022-00764-w

    Article  CAS  PubMed  Google Scholar 

  21. Carbone LD, Kaeley G, McKown KM, Cremer M, Palmieri G, Kaplan S (1999) Effects of long-term administration of methotrexate on bone mineral density in rheumatoid arthritis. Calcif Tissue Int 64:100–101. https://doi.org/10.1007/s002239900585

    Article  CAS  PubMed  Google Scholar 

  22. Emery P, Durez P, Hueber AJ et al (2021) Baricitinib inhibits structural joint damage progression in patients with rheumatoid arthritis-a comprehensive review. Arthritis Res Ther 23:3. https://doi.org/10.1186/s13075-020-02379-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van der Heijde D, Durez P, Schett G et al (2018) Structural damage progression in patients with early rheumatoid arthritis treated with methotrexate, baricitinib, or baricitinib plus methotrexate based on clinical response in the phase 3 RA-BEGIN study. Clin Rheumatol 37:2381–90. https://doi.org/10.1007/2Fs10067-018-4221-0

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fautrel B, Kirkham B, Pope JE et al (2019) Effect of baricitinib and adalimumab in reducing pain and improving function in patients with rheumatoid arthritis in low disease activity: exploratory analyses from RA-BEAM. J Clin Med 8:1394. https://doi.org/10.3390/jcm8091394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dougados M, van der Heijde D, Chen YC et al (2017) Baricitinib in patients with inadequate response or intolerance to conventional synthetic DMARDs: results from the RA-BUILD study. Ann Rheum Dis 76:88–95. https://doi.org/10.1136/annrheumdis-2016-210094

    Article  CAS  PubMed  Google Scholar 

  26. van der Heijde D, Kartman CE, Xie L et al (2022) Radiographic progression of structural joint damage over 5 years of baricitinib treatment in patients with rheumatoid arthritis: results From RA-BEYOND. J Rheumatol 49:133–141. https://doi.org/10.3899/jrheum.210346

    Article  CAS  PubMed  Google Scholar 

  27. Thudium CS, Bay-Jensen AC, Cahya S et al (2020) The Janus kinase 1/2 inhibitor baricitinib reduces biomarkers of joint destruction in moderate to severe rheumatoid arthritis. Arthritis Res Ther 22:235. https://doi.org/10.1186/s13075-020-02340-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ishiguro N, Tanaka Y, Yamanaka H et al (2019) Efficacy of denosumab with regard to bone destruction in prognostic subgroups of Japanese rheumatoid arthritis patients from the phase II DRIVE study. Rheumatology (Oxford) 58:997–1005. https://doi.org/10.1093/rheumatology/key416

    Article  CAS  PubMed  Google Scholar 

  29. Katchamart W, Koolvisoot A, Aromdee E, Chiowchanwesawakit P, Muengchan C (2015) Associations of rheumatoid factor and anti-citrullinated peptide antibody with disease progression and treatment outcomes in patients with rheumatoid arthritis. Rheumatol Int 35:1693–1699. https://doi.org/10.1007/s00296-015-3271-8

    Article  CAS  PubMed  Google Scholar 

  30. Harre U, Georgess D, Bang H et al (2012) Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J Clin Invest 122:1791–1802. https://doi.org/10.1172/jci60975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Harre U, Lang SC, Pfeifle R et al (2015) Glycosylation of immunoglobulin G determines osteoclast differentiation and bone loss. Nat Commun 6:6651. https://doi.org/10.1038/ncomms7651

    Article  CAS  PubMed  Google Scholar 

  32. Aletaha D, Alasti F, Smolen JS (2013) Rheumatoid factor determines structural progression of rheumatoid arthritis dependent and independent of disease activity. Ann Rheum Dis 72:875–880. https://doi.org/10.1136/annrheumdis-2012-201517

    Article  PubMed  Google Scholar 

  33. Laurent L, Clavel C, Lemaire O et al (2011) Fcγ receptor profile of monocytes and macrophages from rheumatoid arthritis patients and their response to immune complexes formed with autoantibodies to citrullinated proteins. Ann Rheum Dis 70:1052–1059. https://doi.org/10.1136/ard.2010.142091

    Article  CAS  PubMed  Google Scholar 

  34. Hecht C, Englbrecht M, Rech J et al (2015) Additive effect of anti-citrullinated protein antibodies and rheumatoid factor on bone erosions in patients with RA. Ann Rheum Dis 74:2151–2156. https://doi.org/10.1136/annrheumdis-2014-205428

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors appreciate the assistance with statistical analysis that was provided by the Biostatistics Task Force of Taichung Veterans General Hospital. The authors acknowledge the assistance from the Center for Translational Medicine of Taichung Veterans General Hospital. The authors would like to thank the Osteoporosis Prevention Center of Taichung Veterans General Hospital for providing the data and assistance with statistical analysis.

Funding

This work was supported by National Science and Technology Council, Taiwan [NSTC -111–2634-F-A49-014, NSTC-111–2218-E-039–001, and NSTC-111–2314-B-075A-003-MY3], and Taichung Veterans General Hospital, Taiwan [TCVGH-1123801A, TCVGH-1127301C, TCVGH-1127302D, and TCVGH-YM1120110].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Ming Chen.

Ethics declarations

Ethical approval

This study was approved by the Institutional Review Board of the Taichung Veterans General Hospital (CE17111A). The participants’ data were anonymized, and, therefore, the requirement of informed consent was waived.

Conflicts of interests

The authors declare that they have no conflict of interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 51.2 KB)

Supplementary file2

(TIF 12.7 MB)

Supplementary file3

(TIF 14.6 MB)

Supplementary file4

(TIF 14.1 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YW., Chen, HH., Huang, WN. et al. Potential alleviation of bone mineral density loss with Janus kinase inhibitors in rheumatoid arthritis. Clin Rheumatol 43, 117–128 (2024). https://doi.org/10.1007/s10067-023-06735-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-023-06735-0

Keywords

Navigation