Skip to main content

Advertisement

Log in

Incidence and risk factors for vertebral fracture in rheumatoid arthritis: an update meta-analysis

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Objectives

This study was conducted to investigate the prevalence of vertebral fracture (VF) and its risk in patients with rheumatoid arthritis (RA) as compared to healthy individuals, and to explore the underlying risk factors.

Methods

The electronic databases of PubMed, EMBASE, and the Cochrane Library were applied to search for the relevant literatures, which reported the prevalence of VF in both RA patients and healthy controls (up to Mar 31, 2021). The non-weighted prevalence of VF, pooled estimates of odds ratio (OR), and its 95% confidence intervals (CI) were calculated with the use of random-effects model; between-study heterogeneity was evaluated by Cochrane Q statistic, then was quantified with I2. Publication bias was evaluated using Egger’s linear regression test.

Results

A number of 867 literatures were identified after searching for online databases, based on the inclusion and exclusion criteria, 11 eligible studies, which comprising 3805 RA patients and 59,517 healthy participants, were finally incorporated in meta-analysis. The results showed that RA patients had an increased prevalence of VF (20.29 vs 8.63%), and an elevated risk for VF (OR = 3.04, 95% CI 1.97–4.71) as compared to healthy population. Additional subgroup analysis suggested that age, body mass index (BMI), disease activity, and drug therapy might be associated with risk of VF in RA.

Conclusions

Overall, our study demonstrated an increased risk of VF in patients with RA, suggesting that age, race, BMI, disease activity, and drug therapy may be represented as risk factors contributing to the occurrence of VF in RA.

Key Points

• RA patients had the increased prevalence and risk of vertebral fracture (VF) as compared to healthy population.

• Age, race, BMI, disease activity, and drug therapy might be associated with VF in RA.

• Our findings would be helpful for the early evaluation of RA patients with high VF risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Singh JA, Saag KG, Bridges SL Jr et al (2016) 2015 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis Rheumatol 68(1):1–26. https://doi.org/10.1002/art.39480

    Article  PubMed  Google Scholar 

  2. Kroot EJ, Nieuwenhuizen MG, de Waal Malefijt MC et al (2001) Change in bone mineral density in patients with rheumatoid arthritis during the first decade of the disease. Arthritis Rheum 44(6):1254–1260. https://doi.org/10.1002/1529-0131(200106)44:6%3c1254::AID-ART216%3e3.0.CO;2-G

    Article  CAS  PubMed  Google Scholar 

  3. Rudan I, Sidhu S, Papana A et al (2015) Prevalence of rheumatoid arthritis in low- and middle-income countries: a systematic review and analysis. J Glob Health 5(1):010409. https://doi.org/10.7189/jogh.05.010409

    Article  PubMed  PubMed Central  Google Scholar 

  4. Usenbo A, Kramer V, Young T et al (2015) Prevalence of arthritis in Africa: a systematic review and meta-analysis. PLoS ONE 10(8):e0133858. https://doi.org/10.1371/journal.pone.0133858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kochi Y (2010) Genetic background of tolerance breakdown in rheumatoid arthritis. Nihon Rinsho Meneki Gakkai Kaishi 33(2):48–56. https://doi.org/10.2177/jsci.33.48

    Article  CAS  PubMed  Google Scholar 

  6. Alpizar-Rodriguez D, Finckh A (2017) Environmental factors and hormones in the development of rheumatoid arthritis. Semin Immunopathol 39(4):461–468. https://doi.org/10.1007/s00281-017-0624-2

    Article  CAS  PubMed  Google Scholar 

  7. Deodhar AA, Woolf AD (1996) Bone mass measurement and bone metabolism in rheumatoid arthritis: a review. Br J Rheumatol 35(4):309–322. https://doi.org/10.1093/rheumatology/35.4.309

    Article  CAS  PubMed  Google Scholar 

  8. Xue AL, Wu SY, Jiang L et al (2017) Bone fracture risk in patients with rheumatoid arthritis: a meta-analysis. Medicine (Baltimore) 96(36):e6983. https://doi.org/10.1097/MD.0000000000006983

    Article  Google Scholar 

  9. Roux C (2011) Osteoporosis in inflammatory joint diseases. Osteoporos Int 22(2):421–433. https://doi.org/10.1007/s00198-010-1319-x

    Article  CAS  PubMed  Google Scholar 

  10. Vosse D, de Vlam K (2009) Osteoporosis in rheumatoid arthritis and ankylosing spondylitis. Clin Exp Rheumatol 27(4 Suppl 55):S62–S67

    CAS  PubMed  Google Scholar 

  11. Ghazi M, Kolta S, Briot K et al (2012) Prevalence of vertebral fractures in patients with rheumatoid arthritis: revisiting the role of glucocorticoids. Osteoporos Int 23(2):581–587. https://doi.org/10.1007/s00198-011-1584-3

    Article  CAS  PubMed  Google Scholar 

  12. van Staa TP, Geusens P, Bijlsma JW et al (2006) Clinical assessment of the long-term risk of fracture in patients with rheumatoid arthritis. Arthritis Rheum 54(10):3104–3112. https://doi.org/10.1002/art.22117

    Article  PubMed  Google Scholar 

  13. Tong JJ, Xu SQ, Zong HX et al (2020) Prevalence and risk factors associated with vertebral osteoporotic fractures in patients with rheumatoid arthritis. Clin Rheumatol 39(2):357–364. https://doi.org/10.1007/s10067-019-04787-9

    Article  PubMed  Google Scholar 

  14. Arai K, Hanyu T, Sugitani H et al (2006) Risk factors for vertebral fracture in menopausal or postmenopausal Japanese women with rheumatoid arthritis: a cross-sectional and longitudinal study. J Bone Miner Metab 24(2):118–124. https://doi.org/10.1007/s00774-005-0657-9

    Article  PubMed  Google Scholar 

  15. Moher D, Liberati A, Tetzlaff J et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 62(10):1006–1012. https://doi.org/10.1016/j.jclinepi.2009.06.005

    Article  PubMed  Google Scholar 

  16. Robert K, Pages C, Ledru A et al (2005) Regulation of extracellular signal-regulated kinase by homocysteine in hippocampus. Neuroscience 133(4):925–935. https://doi.org/10.1016/j.neuroscience.2005.03.034

    Article  CAS  PubMed  Google Scholar 

  17. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558. https://doi.org/10.1002/sim.1186

    Article  PubMed  Google Scholar 

  18. Higgins JP, Thompson SG, Deeks JJ et al (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560

    Article  Google Scholar 

  19. Egger M, Davey Smith G, Schneider M et al (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634

    Article  CAS  Google Scholar 

  20. Guañabens N, Olmos JM, Hernandez JL et al (2021) Vertebral fractures are increased in rheumatoid arthritis despite recent therapeutic advances: a case-control study. Osteoporos Int 32(7):1333–1342. https://doi.org/10.1007/s00198-021-05824-7

    Article  CAS  PubMed  Google Scholar 

  21. Chen YF, Zong HX, Xu SQ et al (2021) Synergistic effect of sarcopenia and poor balance on osteoporotic vertebral fracture in Chinese patients with rheumatoid arthritis. Clin Rheumatol. https://doi.org/10.1007/s10067-021-05703-w

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pierini FS, Brom M, Scolnik M et al (2021) Osteoporotic fractures in rheumatoid arthritis patients in Argentina: a matched retrospective cohort study. Adv Rheumatol 61(1):21. https://doi.org/10.1186/s42358-021-00179-3

    Article  PubMed  Google Scholar 

  23. Kim HA, Lee HY, Jung JY et al (2020) Trabecular bone score is a useful parameter for the prediction of vertebral fractures in patients with polymyalgia rheumatica. J Clin Densitom 23(3):373–380. https://doi.org/10.1016/j.jocd.2019.05.006

    Article  PubMed  Google Scholar 

  24. Fauny M, Albuisson E, Bauer E et al (2019) Study of vertebral fracture and Scanographic Bone Attenuation Coefficient in rheumatoid arthritis and ankylosing spondylitis vs. controls. Sci Rep 9(1):13323. https://doi.org/10.1038/s41598-019-49712-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Okano T, Inui K, Tada M et al (2017) High frequency of vertebral fracture and low bone quality in patients with rheumatoid arthritis-Results from TOMORROW study. Mod Rheumatol 27(3):398–404. https://doi.org/10.1080/14397595.2016.1213943

    Article  PubMed  Google Scholar 

  26. Liu W, Xu S, Ma X et al (2014) Exploration of risk factors on the occurrence of osteoporotic vertebral fracture in patients with rheumatoid arthritis. Zhonghua Nei Ke Za Zhi 53(11):852–857

    CAS  PubMed  Google Scholar 

  27. Brennan SL, Toomey L, Kotowicz MA et al (2014) Rheumatoid arthritis and incident fracture in women: a case-control study. BMC Musculoskelet Disord 15:13. https://doi.org/10.1186/1471-2474-15-13

    Article  PubMed  PubMed Central  Google Scholar 

  28. Palma S, Delgado-Rodriguez M (2005) Assessment of publication bias in meta-analyses of cardiovascular diseases. J Epidemiol Community Health 59(10):864–9. 59/10/864 [pii] https://doi.org/10.1136/jech.2005.033027

  29. Goldring SR (2015) Inflammatory signaling induced bone loss. Bone 80:143–149. https://doi.org/10.1016/j.bone.2015.05.024

    Article  CAS  PubMed  Google Scholar 

  30. Heinlen L, Humphrey MB (2017) Skeletal complications of rheumatoid arthritis. Osteoporos Int 28(10):2801–2812. https://doi.org/10.1007/s00198-017-4170-5

    Article  CAS  PubMed  Google Scholar 

  31. Jin S, Hsieh E, Peng L et al (2018) Incidence of fractures among patients with rheumatoid arthritis: a systematic review and meta-analysis. Osteoporos Int 29(6):1263–1275. https://doi.org/10.1007/s00198-018-4473-1

    Article  CAS  PubMed  Google Scholar 

  32. Ursum J, Britsemmer K, van Schaardenburg D et al (2009) High prevalence of vertebral deformities in elderly patients with early rheumatoid arthritis. Ann Rheum Dis 68(9):1512–1513. https://doi.org/10.1136/ard.2008.105957

    Article  CAS  PubMed  Google Scholar 

  33. O’Brien CA, Jia D, Plotkin LI et al (2004) Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology 145(4):1835–1841. https://doi.org/10.1210/en.2003-0990

    Article  CAS  PubMed  Google Scholar 

  34. Sparks JA (2019) Rheumatoid arthritis. Ann Intern Med 170(1):ITC1–ITC16. https://doi.org/10.7326/AITC201901010

    Article  PubMed  Google Scholar 

  35. di Munno O, Mazzantini M, Sinigaglia L et al (2004) Effect of low dose methotrexate on bone density in women with rheumatoid arthritis: results from a multicenter cross-sectional study. J Rheumatol 31(7):1305–1309

    PubMed  Google Scholar 

  36. Buckley LM, Leib ES, Cartularo KS et al (1997) Effects of low dose methotrexate on the bone mineral density of patients with rheumatoid arthritis. J Rheumatol 24(8):1489–1494

    CAS  PubMed  Google Scholar 

  37. Bologna C, Edno L, Anaya JM et al (1994) Methotrexate concentrations in synovial membrane and trabecular and cortical bone in rheumatoid arthritis patients. Arthritis Rheum 37(12):1770–1773. https://doi.org/10.1002/art.1780371210

    Article  CAS  PubMed  Google Scholar 

  38. May KP, West SG, McDermott MT et al (1994) The effect of low-dose methotrexate on bone metabolism and histomorphometry in rats. Arthritis Rheum 37(2):201–206. https://doi.org/10.1002/art.1780370208

    Article  CAS  PubMed  Google Scholar 

  39. Westhovens R, Dequeker J (2000) Rheumatoid arthritis and osteoporosis. Z Rheumatol 59(Suppl 1):33–38. https://doi.org/10.1007/s003930070036

    Article  PubMed  Google Scholar 

  40. Kwon OC, Oh JS, Hong S et al (2019) Conventional synthetic disease-modifying antirheumatic drugs and bone mineral density in rheumatoid arthritis patients with osteoporosis: possible beneficial effect of leflunomide. Clin Exp Rheumatol 37(5):813–819

    PubMed  Google Scholar 

  41. Vis M, Wolbink GJ, Lodder MC et al (2003) Early changes in bone metabolism in rheumatoid arthritis patients treated with infliximab. Arthritis Rheum 48(10):2996–2997. https://doi.org/10.1002/art.11292

    Article  CAS  PubMed  Google Scholar 

  42. Zerbini CAF, Clark P, Mendez-Sanchez L et al (2017) Biologic therapies and bone loss in rheumatoid arthritis. Osteoporos Int 28(2):429–446. https://doi.org/10.1007/s00198-016-3769-2

    Article  CAS  PubMed  Google Scholar 

  43. Ozen G, Pedro S, Wolfe F et al (2019) Medications associated with fracture risk in patients with rheumatoid arthritis. Ann Rheum Dis 78(8):1041–1047. https://doi.org/10.1136/annrheumdis-2019-215328

    Article  CAS  PubMed  Google Scholar 

  44. Coulson KA, Reed G, Gilliam BE et al (2009) Factors influencing fracture risk, T score, and management of osteoporosis in patients with rheumatoid arthritis in the Consortium of Rheumatology Researchers of North America (CORRONA) registry. J Clin Rheumatol 15(4):155–160. https://doi.org/10.1097/RHU.0b013e3181a5679d

    Article  PubMed  Google Scholar 

  45. Malysheva K, de Rooij K, Lowik CW et al (2016) Interleukin 6/Wnt interactions in rheumatoid arthritis: interleukin 6 inhibits Wnt signaling in synovial fibroblasts and osteoblasts. Croat Med J 57(2):89–98. https://doi.org/10.3325/cmj.2016.57.89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Briot K, Rouanet S, Schaeverbeke T et al (2015) The effect of tocilizumab on bone mineral density, serum levels of Dickkopf-1 and bone remodeling markers in patients with rheumatoid arthritis. Joint Bone Spine 82(2):109–115. https://doi.org/10.1016/j.jbspin.2014.10.015

    Article  CAS  PubMed  Google Scholar 

  47. Abu-Shakra M, Zisman D, Balbir-Gurman A et al (2018) Effect of tocilizumab on fatigue and bone mineral density in patients with rheumatoid arthritis. Isr Med Assoc J 20(4):239–244

    PubMed  Google Scholar 

  48. Chen YM, Chen HH, Huang WN et al (2017) Tocilizumab potentially prevents bone loss in patients with anticitrullinated protein antibody-positive rheumatoid arthritis. PLoS ONE 12(11):e0188454. https://doi.org/10.1371/journal.pone.0188454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Murakami K, Kobayashi Y, Uehara S et al (2017) A Jak1/2 inhibitor, baricitinib, inhibits osteoclastogenesis by suppressing RANKL expression in osteoblasts in vitro. PLoS ONE 12(7):e0181126. https://doi.org/10.1371/journal.pone.0181126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

K. Y. conceived of the presented idea. Y. L. developed the theory and performed the computations. J. J verified the analytical methods. All authors discussed the results and contributed to the final manuscript.

Corresponding authors

Correspondence to Xiaohong Sun or Kailong Yu.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Informed consent was not necessary because all data contained and analyzed in this study are publicly available.

Disclosures

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 KB)

Supplementary file2 (PDF 2586 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Jiang, J., Mo, M. et al. Incidence and risk factors for vertebral fracture in rheumatoid arthritis: an update meta-analysis. Clin Rheumatol 41, 1313–1322 (2022). https://doi.org/10.1007/s10067-021-06046-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-021-06046-2

Keywords

Navigation