Skip to main content
Log in

Identification of differentially expressed genes in synovial tissue of osteoarthritis based on a more robust integrative analysis method

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Objective

This study aimed to identify osteoarthritis (OA) related genes based on microarray data in synovium with a more robust integrative analysis method.

Methods

Four series GSE55457, GSE12021, GSE55235, and GSE55584 (36 OA and 29 normal samples) were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) of GSE55457, GSE12021, and GSE55235 were identified using the LIMMA package. Overlapping DEGs from the intersection of the three series were detected. Simultaneously, samples in the four series were pooled to identify DEGs with integrated analysis using the Sva package.

Results

In total, 74 overlapping DEGs and 242 DEGs by integrating four series were detected. Based on them, 70 common DEGs were used to construct a protein-protein interaction (PPI) network, involving 61 nodes and 206 edges. Also, three gene modules and five hub genes, named JUN, IL6, VEGFA, MYC, and EGR1, were identified.

Conclusions

Seventy DEGs were finally identified with a more robust integrative analysis method. JUN, IL6, VEGFA, MYC, and EGR1 were identified as hub genes in the development of OA.

Key Points

• 76 overlapping DEGs were detected from the intersection of DEGs in GSE55457, GSE12021, and GSE55235.

• 242 DEGs were identified by integrating four series using Sva package.

• 72 common DEGs were finally identified based on the overlapping DEGs and the integrated DEGs.

• JUN, IL6, VEGFA, MYC, and EGR1 were identified as hub genes in the development of OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Haseeb A, Haqqi TM (2013) Immunopathogenesis of osteoarthritis. Clin Immunol (Orlando, Fla) 146(3):185–196. https://doi.org/10.1016/j.clim.2012.12.011

    Article  CAS  Google Scholar 

  2. Heijink A, Gomoll AH, Madry H, Drobnic M, Filardo G, Espregueira-Mendes J, Van Dijk CN (2012) Biomechanical considerations in the pathogenesis of osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc 20(3):423–435. https://doi.org/10.1007/s00167-011-1818-0

    Article  PubMed  Google Scholar 

  3. Robinson WH, Lepus CM, Wang Q, Raghu H, Mao R, Lindstrom TM, Sokolove J (2016) Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol 12(10):580–592. https://doi.org/10.1038/nrrheum.2016.136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brandt KD, Dieppe P, Radin E (2009) Etiopathogenesis of osteoarthritis. Med Clin North Am 93(1):1–24, xv. https://doi.org/10.1016/j.mcna.2008.08.009

    Article  PubMed  Google Scholar 

  5. Jia H, Ma X, Wei Y, Tong W, Tower RJ, Chandra A, Wang L, Sun Z, Yang Z, Badar F, Zhang K, Tseng WJ, Kramer I, Kneissel M, Xia Y, Liu XS, Wang JHC, Han L, Enomoto-Iwamoto M, Qin L (2018) Loading-induced reduction in sclerostin as a mechanism of subchondral bone plate sclerosis in mouse knee joints during late-stage osteoarthritis. Arthritis Rheumatol 70(2):230–241. https://doi.org/10.1002/art.40351

    Article  CAS  PubMed  Google Scholar 

  6. Sellam J, Berenbaum F (2010) The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol 6(11):625–635. https://doi.org/10.1038/nrrheum.2010.159

    Article  CAS  Google Scholar 

  7. He A, Ning Y, Wen Y, Cai Y, Xu K, Cai Y, Han J, Liu L, Du Y, Liang X, Li P, Fan Q, Hao J, Wang X, Guo X, Ma T, Zhang F (2018) Use of integrative epigenetic and mRNA expression analyses to identify significantly changed genes and functional pathways in osteoarthritic cartilage. Bone Joint Res 7(5):343–350. https://doi.org/10.1302/2046-3758.75.bjr-2017-0284.r1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lin J, Wu G, Zhao Z, Huang Y, Chen J, Fu C, Ye J, Liu X (2018) Bioinformatics analysis to identify key genes and pathways influencing synovial inflammation in osteoarthritis. Mol Med Rep. https://doi.org/10.3892/mmr.2018.9575

  9. Cai W, Li H, Zhang Y, Han G (2020) Identification of key biomarkers and immune infiltration in the synovial tissue of osteoarthritis by bioinformatics analysis. PeerJ 8:e8390. https://doi.org/10.7717/peerj.8390

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhu N, Zhang P, Du L, Hou J, Xu B (2020) Identification of key genes and expression profiles in osteoarthritis by co-expressed network analysis. Comput Biol Chem 85:107225. https://doi.org/10.1016/j.compbiolchem.2020.107225

    Article  CAS  PubMed  Google Scholar 

  11. Li Z (2018) Integration of gene expression profile data to screen and verify hub genes involved in osteoarthritis. J Cell Biochem 2018:9482726–9487695. https://doi.org/10.1002/jcb.27118https://doi.org/10.1155/2018/9482726

  12. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD (2012) The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics (Oxford, England) 28(6):882–883. https://doi.org/10.1093/bioinformatics/bts034

    Article  CAS  Google Scholar 

  13. Rahmati M, Nalesso G, Mobasheri A, Mozafari M (2017) Aging and osteoarthritis: central role of the extracellular matrix. Ageing Res Rev 40:20–30. https://doi.org/10.1016/j.arr.2017.07.004

    Article  CAS  PubMed  Google Scholar 

  14. Liu-Bryan R, Terkeltaub R (2015) Emerging regulators of the inflammatory process in osteoarthritis. Nature reviews Rheumatology 11(1):35–44. https://doi.org/10.1038/nrrheum.2014.162

    Article  CAS  PubMed  Google Scholar 

  15. Lambert C, Dubuc JE, Montell E, Verges J, Munaut C, Noel A, Henrotin Y (2014) Gene expression pattern of cells from inflamed and normal areas of osteoarthritis synovial membrane. Arthritis Rheumatol 66(4):960–968. https://doi.org/10.1002/art.38315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Scanzello CR, McKeon B, Swaim BH, DiCarlo E, Asomugha EU, Kanda V, Nair A, Lee DM, Richmond JC, Katz JN, Crow MK, Goldring SR (2011) Synovial inflammation in patients undergoing arthroscopic meniscectomy: molecular characterization and relationship to symptoms. Arthritis and rheumatism 63(2):391–400. https://doi.org/10.1002/art.30137

    Article  PubMed  PubMed Central  Google Scholar 

  17. Favero M, Belluzzi E, Trisolino G, Goldring MB, Goldring SR, Cigolotti A, Pozzuoli A, Ruggieri P, Ramonda R, Grigolo B, Punzi L, Olivotto E (2019) Inflammatory molecules produced by meniscus and synovium in early and end-stage osteoarthritis: a coculture study. Journal of cellular physiology 234(7):11176–11187. https://doi.org/10.1002/jcp.27766

    Article  CAS  PubMed  Google Scholar 

  18. Remst DF, Blom AB, Vitters EL, Bank RA, van den Berg WB, Blaney Davidson EN, van der Kraan PM (2014) Gene expression analysis of murine and human osteoarthritis synovium reveals elevation of transforming growth factor beta-responsive genes in osteoarthritis-related fibrosis. Arthritis Rheumatol 66(3):647–656. https://doi.org/10.1002/art.38266

    Article  CAS  PubMed  Google Scholar 

  19. Latourte A, Cherifi C, Maillet J, Ea HK, Bouaziz W, Funck-Brentano T, Cohen-Solal M, Hay E, Richette P (2017) Systemic inhibition of IL-6/Stat3 signalling protects against experimental osteoarthritis. Annals of the rheumatic diseases 76(4):748–755. https://doi.org/10.1136/annrheumdis-2016-209757

    Article  CAS  PubMed  Google Scholar 

  20. Lefebvre V, Peeters-Joris C, Vaes G (1990) Modulation by interleukin 1 and tumor necrosis factor alpha of production of collagenase, tissue inhibitor of metalloproteinases and collagen types in differentiated and dedifferentiated articular chondrocytes. Biochimica et biophysica acta 1052(3):366–378

    Article  CAS  Google Scholar 

  21. Deligne C, Casulli S, Pigenet A, Bougault C, Campillo-Gimenez L, Nourissat G, Berenbaum F, Elbim C, Houard X (2015) Differential expression of interleukin-17 and interleukin-22 in inflamed and non-inflamed synovium from osteoarthritis patients. Osteoarthritis and cartilage 23(11):1843–1852. https://doi.org/10.1016/j.joca.2014.12.007

    Article  CAS  PubMed  Google Scholar 

  22. Li Z, Zhang R, Yang X, Zhang D, Li B, Zhang D, Li Q, Xiong Y (2018) Analysis of gene expression and methylation datasets identified ADAMTS9, FKBP5, and PFKBF3 as biomarkers for osteoarthritis. Journal of cellular physiology. 234:8908–8917. https://doi.org/10.1002/jcp.27557

    Article  CAS  PubMed  Google Scholar 

  23. Fisch KM, Gamini R, Alvarez-Garcia O, Akagi R, Saito M, Muramatsu Y, Sasho T, Koziol JA, Su AI, Lotz MK (2018) Identification of transcription factors responsible for dysregulated networks in human osteoarthritis cartilage by global gene expression analysis. Osteoarthritis and cartilage 26(11):1531–1538. https://doi.org/10.1016/j.joca.2018.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rhee J, Park SH, Kim SK, Kim JH, Ha CW, Chun CH, Chun JS (2017) Inhibition of BATF/JUN transcriptional activity protects against osteoarthritic cartilage destruction. Annals of the rheumatic diseases 76(2):427–434. https://doi.org/10.1136/annrheumdis-2015-208953

    Article  CAS  PubMed  Google Scholar 

  25. Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H (2011) Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nature reviews Rheumatology 7(1):33–42. https://doi.org/10.1038/nrrheum.2010.196

    Article  CAS  PubMed  Google Scholar 

  26. Poree B, Kypriotou M, Chadjichristos C, Beauchef G, Renard E, Legendre F, Melin M, Gueret S, Hartmann DJ, Mallein-Gerin F, Pujol JP, Boumediene K, Galera P (2008) Interleukin-6 (IL-6) and/or soluble IL-6 receptor down-regulation of human type II collagen gene expression in articular chondrocytes requires a decrease of Sp1.Sp3 ratio and of the binding activity of both factors to the COL2A1 promoter. The Journal of biological chemistry 283(8):4850–4865. https://doi.org/10.1074/jbc.M706387200

    Article  CAS  PubMed  Google Scholar 

  27. Chen H, Tian Y (2017) MiR-15a-5p regulates viability and matrix degradation of human osteoarthritis chondrocytes via targeting VEGFA. Bioscience trends 10(6):482–488. https://doi.org/10.5582/bst.2016.01187

    Article  CAS  PubMed  Google Scholar 

  28. Macchi V, Stocco E, Stecco C, Belluzzi E, Favero M, Porzionato A, De Caro R (2018) The infrapatellar fat pad and the synovial membrane: an anatomo-functional unit. J Anat 233(2):146–154. https://doi.org/10.1111/joa.12820

    Article  PubMed  PubMed Central  Google Scholar 

  29. Favero M, El-Hadi H, Belluzzi E, Granzotto M, Porzionato A, Sarasin G, Rambaldo A, Iacobellis C, Cigolotti A, Fontanella CG, Natali A, Ramonda R, Ruggieri P, De Caro R, Vettor R, Rossato M, Macchi V (2017) Infrapatellar fat pad features in osteoarthritis: a histopathological and molecular study. Rheumatology (Oxford) 56(10):1784–1793. https://doi.org/10.1093/rheumatology/kex287

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liaobin Chen.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Disclosures

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Fig. 1

Quality control. (a) RLE plot. (b) NUSE plot. (c) RNA degradation map. RLE relative log expression, NUSE normalized unscaled standard errors (TIF 8858 kb)

High resolution image (PNG 568 kb)

Supplementary Fig. 2

Principal component analysis. (TIF 6778 kb)

High resolution image (PNG 245 kb)

Supplementary Fig. 3

Batch correction with Sva package. (TIF 8866 kb)

High resolution image (PNG 387 kb)

Supplementary Fig. 4

The top ten significantly enriched pathways of the first two gene modules. (TIF 6366 kb)

High resolution image (PNG 188 kb)

ESM 5

(DOCX 15 kb)

ESM 6

(DOCX 18 kb)

ESM 7

(DOCX 18 kb)

ESM 8

(DOCX 18 kb)

ESM 9

(DOCX 19 kb)

ESM 10

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Ni, Q., Li, B. et al. Identification of differentially expressed genes in synovial tissue of osteoarthritis based on a more robust integrative analysis method. Clin Rheumatol 40, 3745–3754 (2021). https://doi.org/10.1007/s10067-021-05649-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-021-05649-z

Keywords

Navigation