Skip to main content

Advertisement

Log in

Probabilistic seismic hazard assessment of Dhanbad city, India

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Dhanbad, also known as ‘Coal Capital of India’, is an important district in the state of Jharkhand, India. In this paper, hazard maps for the city are prepared at bedrock level following probabilistic seismic hazard analysis (PSHA). In the absence of region-specific prediction model, the concept of logic tree comprising of four different ground motion prediction equations (GMPEs) is employed to consider epistemic uncertainties. The study reveals that the maximum expected peak ground acceleration (PGA) in the city may be 0.16 g and 0.23 g with 10% and 2% probability of exceedances in 50 years, respectively. The most conservative seismic hazard curve for Dhanbad city is presented to aid future earthquake-resistant design. Furthermore, it is found that blocks in southern parts of the city such as Baghmara, Jharia and Baliapur are most vulnerable to seismic hazard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1970) Handbook of mathematical functions, 9th edn. Dover Publication, New York

    Google Scholar 

  • Anbazhagan P, Vinod JS, Sitharam TG (2009) Probabilistic seismic hazard analysis for Bangalore. Nat Hazards 48:145–166

    Article  Google Scholar 

  • Anbazhagan P, Kumar A, Sitharam TG (2013a) Ground motion prediction equation considering combined data set of recorded and simulated ground motions. Soil Dyn Earthq Eng 53:92–108

    Article  Google Scholar 

  • Anbazhagan P, Smitha CV, Kumar A, Chandran D (2013b) Seismic hazard assessment of NPP site at Kalpakkam, Tamil Nadu, India. Nucl Eng Des 259:41–64

    Article  Google Scholar 

  • Anbazhagan P, Bajaj K, Patel S (2015) Seismic hazard maps and spectrum for Patna considering region-specific seismotectonic parameters. Nat Hazards. https://doi.org/10.1007/s11069-015-1764-0

  • Anbazhagan P, Bajaj K, Dutta N, Moustafa SSR, Al-arifi NSN (2017) Region-specific deterministic and probabilistic seismic hazard analysis of Kanpur city. J Earth Syst Sci 126:12. https://doi.org/10.1007/s12040-016-0779-6

    Article  Google Scholar 

  • Baro O, Kumar A (2017) Seismic source characterization for the Shillong Plateau in Northeast India. J Seismol. https://doi.org/10.1007/s10950-017-9664-2

  • Bommer JJ, Douglas J, Scherbaum F, Cotton F, Bungum H, Fah D (2010) On the selection of ground- motion prediction equations for seismic hazard analysis. Seismol Res Lett 81(5):783–793

    Article  Google Scholar 

  • Boore DM, Atkinson GM (2008) Ground-motion prediction equations for the average horizontal component of PGA, PGV and 5% damped PSA at spectral periods between 0.01 and 10.0 s. Earthquake Spectra 24(1):99–138

    Article  Google Scholar 

  • Borah N, Kumar A (2018) Studying and comparing the declustered EQ catalogue obtained from different methods for Guwahati region NE India. In: Proceedings of Indian Geotechnical Conference 2018, IISc Bangalore

  • Das R, Wason HR, Sharma ML (2011) Global regression relations for conversion of surface wave and body wave magnitudes to moment magnitude. Nat Hazards 59(801):810

    Google Scholar 

  • Dasgupta S, Pande P, Ganguly D, Iqbal Z, Sanyal K, Venkatraman NV, Dasgupta S, Sural B, Harendranath L, Mazumdar K, Sanyal S, Roy A, Das LK, Misra P S, Gupta H (2000) Seismotectonic Atlas of India and its environs. Geological survey of India, special Publication, No. 59, pp 87

  • Delavaud E, Scherbaum F, Kuehn N, Riggelsen C (2009) Information-theoretic selection of ground-motion prediction equations for seismic hazard analysis: an applicability study using Californian data. Bull Seismol Soc Am 99:3248–3263

    Article  Google Scholar 

  • Delavaud E, Scherbaum F, Kuehn N, Allen T (2012) Testing the global applicability of ground-motion prediction equations for active shallow crustal regions. Bull Seismol Soc Am 102(2):702–721

    Article  Google Scholar 

  • EM-1110 (1999) Engineer manual 1110–2-6050, Department of Army, US Army corps of Engineers, Washington DC, USA, DC-20314-1000

  • ESRI (2016) ArcGIS Release 10.5. Environmental Systems Research Institute (ESRI), Redlands, California

  • Ferraro A, Grasso S, Massimino MR (2018) Site effects evaluation in Catania (Italy) by means of 1-D numerical analysis. Ann Geophys 61(2):SE224. https://doi.org/10.4401/ag-7708

    Article  Google Scholar 

  • Gutenberg B, Richter CF (1956) Earthquake magnitude, intensity, energy and acceleration. Bull Seismol Soc Am 46:105–145

    Google Scholar 

  • IBC (2000) International building code. International Code Council, Falls Church

    Google Scholar 

  • Irwandi I, Umar M, Khaizal J, Asrurifak M, Usama F, Ridwan M (2020) The neo-deterministic seismic hazard map (NDSHA) of Sumatra compared with official 2010 and 2017 derived from PSHA method. IOP Conf Ser Mater Sci Eng 712:012017

    Article  Google Scholar 

  • IS 1893 (2016) Indian standard criteria for earthquake resistant design of structures. Part 1: General provisions and buildings: Bureau of Indian Standards, New Delhi

  • Iyengar RN, Ghosh S (2004) Microzonation of earthquake hazard in Greater Delhi area. Curr Sci 87(9)

  • Joshi GC, Sharma ML (2008) Uncertainties in the estimation of Mmax. J Earth Syst Sci 117(S2):671–682

    Article  Google Scholar 

  • Kanno T, Narita A, Morikawa N, Fujiwara H, Fukushima Y (2006) A new attenuation relation for strong ground motion in Japan based on recorded data. Bull Seismol Soc Am 96:879–897

    Article  Google Scholar 

  • Khan PK, Biswas B, Samdarshi P, Prasad R (2011) Seismicity and the coda-Q variation in eastern Indian shield region. Indian J Geosci 65:43–50

    Google Scholar 

  • Kijko A, Sellevoll MA (1989) Estimation of earthquake hazard parameters from incomplete data files. Part I, utilization of extreme and complete catalogues with different threshold magnitudes. Bull Seismol Soc Am 79:645–654

    Google Scholar 

  • Kolathayar S, Sitharam TG, Vipin KS (2012) Deterministic seismic hazard macrozonation of India. J Earth Syst Sci 121:1351–1364

    Article  Google Scholar 

  • Kramer SL (1996) Geotechnical earthquake engineering. Prentice Hall

  • Kumar A, Anbazhagan P, Sitharam TG (2013) Seismic hazard analysis of Lucknow considering local and active seismic gaps. Nat Hazards 69:327–350

    Article  Google Scholar 

  • Magrin A, Parvez IA, Vaccari F, Peresan A, Rastogi BK, Cozzini S, Bisignano D, Romanelli F, Ashish, Choudhury P, Roy KS, Mir RR, Panza GF (2015) Neo-deterministic definition of seismic and tsunami hazard scenarios for the territory of Gujarat (India) In: D’Amico S. (eds) Earthquakes and their impact on society. Springer Natural Hazards. Springer, Cham

  • MATLAB Programming Version (R2019a) The MathWorks Inc. Natick, Massachusetts, United States.

  • Mignan A, Werner MJ, Wiemer S, Chen CC, Wu YM (2011) Bayesian estimation of the spatially varying completeness magnitude of earthquake catalogs. Bull Seismol Soc Am 101(3):1371–1385

    Article  Google Scholar 

  • Mourabit T, Abou Elenean KM, Ayadi A, Benouar D, Suleman AB, Bezzeghoud M, Cheddadi A, Chourak M, ElGabry MN, Harbi A, Hfaiedh M, Hussein HM, Kacem J, Ksentini A, Jabour N, Magrin A, Maouche S, Meghraoui M, Ousadou F, Panza GF, Peresan A, Romdhane N, Vaccari F, Zuccolo E (2014) Neo-deterministic seismic hazard assessment in North Africa. J Seismol 18:301–318

    Article  Google Scholar 

  • Naik N, Choudhury D (2014) Deterministic seismic hazard analysis considering different seismicity levels for the state of Goa, India. Nat Hazards 75(1):557–580

    Article  Google Scholar 

  • Nath SK, Thingbaijam KKS (2012) Probabilistic seismic hazard assessment of India. Seismol Res Lett 83:135–149

    Article  Google Scholar 

  • Nath SK, Thingbaijam KKS, Raj A (2008) Earthquake hazard in Northeast India- A seismic microzonation approach with typical case studies from Sikkim Himalaya and Guwahati city. J Earth Syst Sci 117(S2):809–831

    Article  Google Scholar 

  • NDMA (2010) Development of probabilistic seismic hazard map of India. Technical report by National Disaster Management Authority. Government of India, New Delhi

    Google Scholar 

  • Puri N, Jain A (2016) Deterministic seismic hazard analysis for the state of Haryana, India. Indian Geotech J 46(2):164–174. https://doi.org/10.1007/s40098-015-0167-1

    Article  Google Scholar 

  • Raghu Kanth STG, Iyenger RN (2006) Seismic hazard estimation of Mumbai City. Curr Sci 91(11):1486–1494

    Google Scholar 

  • Reasenberg P (1985) Second order moment of central California seismicity, 1969–1982. J Geophys Res Solid Earth 90(B7):5479–5495

    Article  Google Scholar 

  • Sabetta F, Lucantoni A, Bungum H, Boomer JJ (2005) Sensitivity of PSHA results to ground motion prediction relations and logic-tree weights. Soil Dyn Earthq Eng 25:317–329

    Article  Google Scholar 

  • Scherbaum F, Delavaud E, Riggelsen C (2009) Model selection in seismic hazard analysis: an information theoretic perspective. Bull Seismol Soc Am 99:3234–3247

    Article  Google Scholar 

  • Schulte SM, Mooney WD (2004) An updated earthquake catalog for stable continental regions, Intraplate earthquakes (495–2002). United States Geological Survey. http://earthquake.usgs.gov/research/data

  • Singh B, Dowerah J (2010) Geospatial mapping of Singhbhum shear zone (SSZ) with respect to mineral prospecting. J. Geogr Inf Syst 20:177–184

    Google Scholar 

  • Stepp JC (1972) Analysis of completeness of the earthquake sample in the Puget sound area and its effect on statistical estimates of earthquake hazard. In: Proceeding of the International conference on microzonation, Seattle, USA 2:897–910

  • Villaverde R (2009) Fundamental concepts of earthquake engineering. CRC Press

  • Wiemer S (2001) A software package to analyze seismicity: ZMAP. Seismol Res Lett 72(3):373–382. https://doi.org/10.1785/gssrl.72.3.373

    Article  Google Scholar 

  • Wiemer S, Wyss M (2000) Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the Western United States, and Japan. Bull Seismol Soc Am 90(4):859–869. https://doi.org/10.1785/0119990114

    Article  Google Scholar 

Download references

Acknowledgements

The first author acknowledges the financial support provided by MHRD, Govt. of India. The second author acknowledges Mr. S. Dasgupta, Geological Survey of India, Govt. of India for providing the SEISAT maps for conducting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajib Sarkar.

Appendix

Appendix

Table 6 Estimation of Mmax and deaggregation of faults

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, R., Sarkar, R. Probabilistic seismic hazard assessment of Dhanbad city, India. Bull Eng Geol Environ 79, 5107–5124 (2020). https://doi.org/10.1007/s10064-020-01882-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-020-01882-z

Keywords

Navigation