Skip to main content
Log in

A linear graphical method to predict the effect of compaction on the hydraulic conductivity of clay liners and covers

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

It is proposed to present compaction relationships by plotting the inverse of the dry density versus the molding water content. In the proposed graph, the curves for equal degree of saturation become straight lines. The proposed new graph is shown to be very convenient to assess the saturated hydraulic conductivity, k sat, of non-swelling compacted clay, using a dual porosity model. The value of k sat depends on the secondary porosity between clay clods. The equation developed for equal k sat value appears also as a straight line in the proposed graph. It facilitates the prediction of k sat from field compaction data and thus the prediction of field performance of clay liners and covers.

Résumé

Pour présenter les relations de compactage, on propose de porter l’inverse de la masse volumique sèche versus la teneur en eau. Dans le graphe proposé, les courbes d’égal degré de saturation deviennent des droites. Le nouveau graphe proposé s’avère très utile pour évaluer la conductivité hydraulique saturée, k sat, d’une argile compactée non gonflante, à partir d’un modèle de double porosité. La valeur de k sat dépend de la porosité secondaire entre les mottes d’argile. L’équation d’iso valeurs de k sat développée apparaît aussi comme une droite dans le graphique proposé. Ceci facilite la prédiction de k sat à partir des données de compactage de chantier, et donc la prédiction de la performance en place des tapis et couvertures en argile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Arquié G (1964) L’eau et la route: terrassements, compactage, portance. Revue générale des routes et des aérodromes 391:75–81

    Google Scholar 

  • Aubertin M, Dagenais A-M (2000) Étude des effets du gel sur les propriétés d’un matériau argileux dans une couverture. Rapport CDT P2380, École Polytechnique, Montréal

  • Benson C, Othman M (1993) Hydraulic conductivity of compacted clay frozen and thawed in situ. ASCE J Geotech Eng 119(2):276–294

    Article  Google Scholar 

  • Benson CH, Zhai H, Wang X (1994) Estimating hydraulic conductivity of compacted clay liners. ASCE J Geotech Eng 120(2):366–387

    Article  Google Scholar 

  • Benson CH, Daniel DE, Boutwell G (1999) Field performance of compacted clay liners. ASCE J Geotech Geoenviron Eng 125(5):390–403

    Article  Google Scholar 

  • Biarez J (1972) Unpublished course notes (in French). Institut de mécanique de Grenoble, France

  • Blotz LR, Benson CH, Boutwell GP (1998) Estimating optimum water content and maximum dry unit weight for compacted clays. ASCE J Geotech Geoenviron Eng 124(9):907–912

    Article  Google Scholar 

  • Boynton SS, Daniel DE (1985) Hydraulic conductivity tests on compacted clay. ASCE J Geotech Eng 111(4):465–478

    Google Scholar 

  • Cazaux D, Didier G (2002) Comparison between various field and laboratory measurements of the hydraulic conductivity of three clay liners. In: Sara MN, Everett LG (eds) Evaluation and remediation of low and dual porosity environments, STP 1415. ASTM International, West Conshohocken, pp 3–24

  • Chamberlain E, Gow AJ (1979) Effects of freezing and thawing on the permeability and structure of soils. Eng Geol 13:73–92

    Article  Google Scholar 

  • Chapuis RP (1981) Permeability testing of soil–bentonite mixtures. Proceedings of the 10th international conference on soil mechanics and foundation engineering, vol. 4, Stockholm, pp. 744–745

  • Chapuis RP (1990) Sand–bentonite liners: predicting permeability from laboratory tests. Can Geotech J 27(1):47–57

    Article  Google Scholar 

  • Chapuis RP (2002) The 2000 R.M. Hardy lecture: full-scale hydraulic performance of soil–bentonite and compacted clay liners. Can Geotech J 39(2):417–439

    Article  Google Scholar 

  • Chapuis RP (2004) Permeability tests in rigid-wall permeameters: determining the degree of saturation, its evolution and influence on test results. Geotech Test J 27(3):304–313

    Article  Google Scholar 

  • Chapuis RP, Baass K, Davenne L (1989) Granular soils in rigid-wall permeameters: method for determining the degree of saturation. Can Geotech J 26(1):71–79

    Google Scholar 

  • Chapuis RP, Lavoie J, Girard D (1992) Design, construction, performance and repairs of the soil–bentonite liners of two lagoons. Can Geotech J 29(5):638–649

    Article  Google Scholar 

  • Daniel DE (1984) Predicting hydraulic conductivity of clay liners. ASCE J Geotech Eng 110(2):285–300

    Google Scholar 

  • Daniel DE (1985) Predicting hydraulic conductivity of clay liners: reply. ASCE J Geotech Eng 111(12):1466–1467

    Google Scholar 

  • Daniel DE, Benson CH (1990) Water content-density criteria for compacted soil liners. ASCE J Geotech Eng 116(12):1811–1830

    Article  Google Scholar 

  • Day SR, Daniel DE (1985) Hydraulic conductivity of two prototype clay liners. ASCE J Geotech Eng 111(8):957–970

    Google Scholar 

  • Delage P, Tessier D, Marcel-Audiguier M (1982) Use of the cryoscan apparatus for observation of freeze-fractured planes of a sensitive clay in scanning electron microscopy. Can Geotech J 19:111–114

    Article  Google Scholar 

  • Eigenbrod KD (1996) Effects of cyclic freezing and thawing on volume changes and permeabilities of soft fine-grained soils. Can Geotech J 33:529–537

    Article  Google Scholar 

  • Elsbury BR, Daniel DE, Straders GA, Anderson DC (1990) Lessons learned from compacted clay liner. ASCE J Geotech Eng 116(11):1641–1660

    Article  Google Scholar 

  • Faure AG, Da Mata JDV (1994) Penetration resistance value along compaction curves. ASCE J Geotech Eng 20:46–59

    Article  Google Scholar 

  • Fredlund DG, Morgenstern NR (1977) Stress state variables for unsaturated soils. ASCE J Geotech Eng 103:447–464

    Google Scholar 

  • Granger M (1969) Méthode rapide de contrôle du compactage des sols fins. Bulletin de Liaison des Laboratoires Routiers des Ponts et Chaussées 40:43–48

    Google Scholar 

  • Guyonnet D, Gourry J-C, Bertrand L, Amraoui N (2003) Heterogeneity detection in an experimental clay liner. Can Geotech J 40(1):149–160

    Article  Google Scholar 

  • Haug MD, Wong LC (1992) Impact of molding water content on hydraulic conductivity of compacted soil–bentonite. Can Geotech J 29(2):253–262

    Article  Google Scholar 

  • Kodikara JK, Rahman F (2002) Moisture content and hydraulic conductivity relations for compacted clay liners. Aust Civ Eng Trans 43:13–18

    Google Scholar 

  • Lambe TW (1958) The structure of compacted clay. ASCE J Soil Mech Found Div 84(SM2):1654-1–1654-34

    Google Scholar 

  • Langfelder LJ, Chen CF, Justice JA (1968) Air permeability of compacted cohesive soils. ASCE J Soil Mech Found Div 94(SM4):981–1001

    Google Scholar 

  • Leflaive E, Schaeffner M (1980) Compactabilité des sols appréciée par la mesure de leur perméabilité à l’air. Proceedings of the international conference on compaction, vol. 1. Éditions Anciens ENPC, Paris, pp 57–62

  • Leroueil S, LeBihan JP, Bouchard R (1992) Remarks on the design of clay liners used in lagoons as hydraulic barriers. Can Geotech J 29(3):512–515

    Article  Google Scholar 

  • Mitchell JK, Hooper DR, Campanella RG (1965) Permeability of compacted clay. ASCE J Soil Mech Found Div 91(SM4):41–65

    Google Scholar 

  • Mundell JA, Bailey B (1985) The design and testing of a compacted clay barrier layer to limit percolation through landfill covers. In: Hydraulic barriers in soils and rocks, STP 874. ASTM, Philadelphia, pp 246–262

  • Othman M, Benson C, Chamberlain E, Zimmie T (1995) Laboratory testing to evaluate changes in hydraulic conductivity of compacted clays caused by freeze-thaw: state-of-the-art. In: Daniel DE, Trautwein S (eds) Hydraulic conductivity and waste contaminant transport in soils, STP 1142. ASTM International, West Conshohocken, pp 227–254

  • Popovic M, Sarac D (1980) Some properties of compacted clay materials. Proceedings of the international conference on compaction, vol. 1. Editions Anciens ENPC, Paris, pp 189–193

  • Sherwood PT (1975) Reproductibilité des essais de classification et de compactage des sols. Bulletin de Liaison des Laboratoires Routiers des Ponts et Chaussées. No. Spécial X:145–161

  • Stewart JP, Nolan TW (1987) Infiltration testing for hydraulic conductivity of soil liners. Geotech Test J 10(2):41–50

    Article  Google Scholar 

  • Terzaghi K (1922) Der Grundbruch an Stauwerken and seine Verhaltung. Die Wasserkraft 17(24):445–449

    Google Scholar 

  • Zimmie TF (1992) Freeze-thaw effects on the permeability of compacted clay liners and covers. Geotech News 10(1):28–30

    Google Scholar 

Download references

Acknowledgments

The research results presented here were sponsored by the National Research Council of Canada. The authors thank Richard Darling for reading and commenting the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert P. Chapuis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chapuis, R.P., Mbonimpa, M., Dagenais, AM. et al. A linear graphical method to predict the effect of compaction on the hydraulic conductivity of clay liners and covers. Bull Eng Geol Environ 65, 93–98 (2006). https://doi.org/10.1007/s10064-005-0031-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-005-0031-0

Keywords

Mots clés