Skip to main content

Advertisement

Log in

A recurrent de novo CTBP1 mutation is associated with developmental delay, hypotonia, ataxia, and tooth enamel defects

neurogenetics Aims and scope Submit manuscript

Abstract

Exome sequencing is an effective way to identify genetic causes of etiologically heterogeneous conditions such as developmental delay and intellectual disabilities. Using exome sequencing, we have identified four patients with similar phenotypes of developmental delay, intellectual disability, failure to thrive, hypotonia, ataxia, and tooth enamel defects who all have the same de novo R331W missense variant in C-terminal binding protein 1 (CTBP1). CTBP1 is a transcriptional regulator critical for development by coordinating different regulatory pathways. The R331W variant found in these patients is within the C-terminal portion of the PLDLS (Pro-Leu-Asp-Leu-Ser) binding cleft, which is the domain through which CTBP1, interacts with chromatin-modifying enzymes and mediates chromatin-dependent gene repression pathways. This is the first report of mutations within CTBP1 in association with any human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Retterer K et al., Clinical application of whole-exome sequencing across clinical indications. Genet Med 2015

  2. Yang Y et al. (2014) Molecular findings among patients referred for clinical whole-exome sequencing. JAMA 312(18):1870–1879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gao Z et al. (2014) An AUTS2-Polycomb complex activates gene expression in the CNS. Nature 516(7531):349–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Iglesias A et al. (2014) The usefulness of whole-exome sequencing in routine clinical practice. Genet Med 16(12):922–931

    Article  PubMed  Google Scholar 

  5. Veltman JA, Brunner HG (2012) De novo mutations in human genetic disease. Nat Rev Genet 13(8):565–575

    Article  CAS  PubMed  Google Scholar 

  6. Kuppuswamy M et al. (2008) Role of the PLDLS-binding cleft region of CtBP1 in recruitment of core and auxiliary components of the corepressor complex. Mol Cell Biol 28(1):269–281

    Article  CAS  PubMed  Google Scholar 

  7. Tanaka AJ et al. (2015) Mutations in SPATA5 are associated with microcephaly, intellectual disability, seizures, and hearing loss. Am J Hum Genet 97(3):457–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31(13):3812–3814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schwarz JM et al. (2010) MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods 7(8):575–576

    Article  CAS  PubMed  Google Scholar 

  10. Shihab HA et al. (2013) Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum Mutat 34(1):57–65

    Article  CAS  PubMed  Google Scholar 

  11. Mohiyuddin M et al. (2015) MetaSV: an accurate and integrative structural-variant caller for next generation sequencing. Bioinformatics 31(16):2741–2744

    Article  PubMed  PubMed Central  Google Scholar 

  12. Plasterer TN (2000) PROTEAN. Protein sequence analysis and prediction. Mol Biotechnol 16(2):117–125

    Article  CAS  PubMed  Google Scholar 

  13. Adzhubei IA et al. (2010) A method and server for predicting damaging missense mutations. Nat Methods 7(4):248–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huang N et al. (2010) Characterising and predicting haploinsufficiency in the human genome. PLoS Genet 6(10):e1001154

    Article  PubMed  PubMed Central  Google Scholar 

  15. Petrovski S et al. (2013) Genic intolerance to functional variation and the interpretation of personal genomes. PLoS Genet 9(8):e1003709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nibu Y, Zhang H, Levine M (1998) Interaction of short-range repressors with Drosophila CtBP in the embryo. Science 280(5360):101–104

    Article  CAS  PubMed  Google Scholar 

  17. Poortinga G, Watanabe M, Parkhurst SM (1998) Drosophila CtBP: a hairy-interacting protein required for embryonic segmentation and hairy-mediated transcriptional repression. EMBO J 17(7):2067–2078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hildebrand JD, Soriano P (2002) Overlapping and unique roles for C-terminal binding protein 1 (CtBP1) and CtBP2 during mouse development. Mol Cell Biol 22(15):5296–5307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Uhlen M et al. (2005) A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics 4(12):1920–1932

    Article  CAS  PubMed  Google Scholar 

  20. Schaeper U et al. (1995) Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc Natl Acad Sci U S A 92(23):10467–10471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kumar V et al. (2002) Transcription corepressor CtBP is an NAD(+)-regulated dehydrogenase. Mol Cell 10(4):857–869

    Article  CAS  PubMed  Google Scholar 

  22. Shi Y et al. (2003) Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 422(6933):735–738

    Article  CAS  PubMed  Google Scholar 

  23. Montgomery RL et al. (2007) Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev 21(14):1790–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lagger G et al. (2002) Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J 21(11):2672–2681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tachibana M et al. (2002) G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev 16(14):1779–1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kotilainen J et al. (2009) Premolar hypodontia is a common feature in Sotos syndrome with a mutation in the NSD1 gene. Am J Med Genet A 149A(11):2409–2414

    Article  CAS  PubMed  Google Scholar 

  27. Balic A, Thesleff I (2015) Tissue interactions regulating tooth development and renewal. Curr Top Dev Biol 115:157–186

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the families for their generous contributions. This work was supported in part by a grant from the Simons Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy K. Chung.

Ethics declarations

Conflict of interest

Megan Cho, Francisca Millan, Carin Yates, Kyle Retterer, Amber Begtrup, and Renkui Bai are employees of GeneDx. Wendy Chung is a consultant to BioReference Laboratories. The other authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beck, D.B., Cho, M.T., Millan, F. et al. A recurrent de novo CTBP1 mutation is associated with developmental delay, hypotonia, ataxia, and tooth enamel defects. Neurogenetics 17, 173–178 (2016). https://doi.org/10.1007/s10048-016-0482-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-016-0482-4

Keywords

Navigation