Skip to main content

Advertisement

Log in

The behavior of ligament cells cultured on elastin and collagen scaffolds

  • Original Article
  • Tissue Engineering / Regenerative Medicine
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

The ruptured anterior cruciate ligament (ACL) does not heal spontaneously. Therefore, the development of new healing techniques employing tissue engineering is vital. One of the aspects related to tissue-engineered artificial ligaments is the type of cell to be used for the artificial ligament. In this study, ligament cells from the ACL and periodontal ligament (PDL) were evaluated. In addition, we prepared highly oriented extracellular matrix (ECM) fiber scaffolds that mimicked the structure of the ligament and examined the cellular responses to these scaffolds. Elastin-A and collagen were used as the ECM proteins. Although the cells from the PDL (PDL fibroblasts [PDLFs]) showed approximately 2.1-fold higher expression of alkaline phosphatase (ALP; marker of osteogenic differentiation) than the ACL cells, the expression of ligament-related genes (for type I collagen, type III collagen, and tenomodulin) did not differ between PDLFs and ACL cells. Furthermore, the cellular responses (expression pattern of ligament-related genes and ALP activity) to the ECM were similar between ACL cells and PDLFs. In particular, elastin-A upregulated ALP and downregulated tenomodulin (TeM; a ligament marker) in ligament cells. In contrast, collagen maintained TeM expression in ligament cells. These results suggest that elastin-A promotes the osteogenic differentiation of ligament cells and that collagen maintains the phenotype of ligament cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hadjicostas PT, Soucacos PN, Koleganova N, Krohmer G, Berger I. Comparative and morphological analysis of commonly used autografts for anterior cruciate ligament reconstruction with the native ACL: an electron, microscopic and morphologic study. Knee Surg Sports Traumatol Arthrosc. 2008;16:1099–107.

    Article  PubMed  Google Scholar 

  2. Duthon VB, Barea C, Abrassart S, Fasel JH, Fritschy D, Menetrey J. Anatomy of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc. 2006;14:204–13.

    Article  CAS  PubMed  Google Scholar 

  3. Laurencin CT, Freeman JW. Ligament tissue engineering: an evolutionary materials science approach. Biomaterials. 2005;26:7530–6.

    Article  CAS  PubMed  Google Scholar 

  4. Somerman MJ, Archer SY, Imm GR, Foster RA. A comparative study of human periodontal ligament cells and gingival fibroblasts in vitro. J Dent Res. 1988;67:66–70.

    Article  CAS  PubMed  Google Scholar 

  5. Lekic P, McCulloch CA. Periodontal ligament cell population: the central role of fibroblasts in creating a unique tissue. Anat Rec. 1996;245:327–41.

    Article  CAS  PubMed  Google Scholar 

  6. Ramakrishnan PR, Lin WL, Sodek J, Cho MI. Synthesis of noncollagenous extracellular matrix proteins during development of mineralized nodules by rat periodontal ligament cells in vitro. Calcif Tissue Int. 1995;57:52–9.

    Article  CAS  PubMed  Google Scholar 

  7. Cheng MT, Yang HW, Chen TH, Lee OK. Isolation and characterization of multipotent stem cells from human cruciate ligaments. Cell Prolif. 2009;42:448–60.

    Article  CAS  PubMed  Google Scholar 

  8. Steinert AF, Kunz M, Prager P, Barthel T, Jakob F, Noth U, Murray MM, Evans CH, Porter RM. Mesenchymal stem cell characteristics of human anterior cruciate ligament outgrowth cells. Tissue Eng Part A. 2011;17:1375–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Zhang J, Pan T, Im HJ, Fu FH, Wang JH. Differential properties of human ACL and MCL stem cells may be responsible for their differential healing capacity. BMC Med. 2011;9:68.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Tanaka K, Iwasaki K, Feghali KE, Komaki M, Ishikawa I, Izumi Y. Comparison of characteristics of periodontal ligament cells obtained from outgrowth and enzyme-digested culture methods. Arch Oral Biol. 2011;56:380–8.

    Article  CAS  PubMed  Google Scholar 

  11. Wu LP, Wei X, Ling JQ, Liu L. The surface antigen expression of periodontal ligament cells and dental pulp cells in vitro. Hua Xi Kou Qiang Yi Xue Za Zhi. 2009;27:20–3.

    CAS  PubMed  Google Scholar 

  12. Zhao Y, Wang C, Li S, Song H, Wei F, Pan K, Zhu K, Yang P, Tu Q, Chen J. Expression of Osterix in mechanical stress-induced osteogenic differentiation of periodontal ligament cells in vitro. Eur J Oral Sci. 2008;116:199–206.

    Article  CAS  PubMed  Google Scholar 

  13. Mizutani N, Kawato H, Maeda Y, Takebayashi T, Miyamoto K, Horiuchi T. Multiple-type dynamic culture of highly oriented fiber scaffold for ligament regeneration. J Artif Organs. 2013;16:49–58.

    Article  CAS  PubMed  Google Scholar 

  14. Miyamoto K. Crosslinked elastin and process for producing the same. US Patent 7,125,960 B2 2006-10-24.

  15. Miyamoto K, Atarashi M, Kadozono H, Shibata M, Koyama Y, Okai M, Inakuma A, Kitazono E, Kaneko H, Takebayashi T, Horiuchi T. Creation of cross-linked electrospun isotypic-elastin fibers controlled cell-differentiation with new cross-linker. Int J Biol Macromol. 2009;45:33–41.

    Article  CAS  PubMed  Google Scholar 

  16. Stylianou E, Jenner LA, Davies M, Coles GA, Williams JD. Isolation, culture and characterization of human peritoneal mesothelial cells. Kidney Int. 1990;37:1563–70.

    Article  CAS  PubMed  Google Scholar 

  17. Haddad-Weber M, Prager P, Kunz M, Seefried L, Jakob F, Murray MM, Evans CH, Noth U, Steinert AF. BMP12 and BMP13 gene transfer induce ligamentogenic differentiation in mesenchymal progenitor and anterior cruciate ligament cells. Cytotherapy. 2010;12:505–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Itaya T, Kagami H, Okada K, Yamawaki A, Narita Y, Inoue M, Sumita Y, Ueda M. Characteristic changes of periodontal ligament-derived cells during passage. J Periodontal Res. 2009;44:425–33.

    Article  CAS  PubMed  Google Scholar 

  19. Kimura N, Shukunami C, Hakuno D, Yoshioka M, Miura S, Docheva D, Kimura T, Okada Y, Matsumura G, Shin’oka T, Yozu R, Kobayashi J, Ishibashi-Ueda H, Hiraki Y, Fukuda K. Local tenomodulin absence, angiogenesis, and matrix metalloproteinase activation are associated with the rupture of the chordae tendineae cordis. Circulation. 2008;118:1737–47.

    Article  CAS  PubMed  Google Scholar 

  20. Shukunami C, Takimoto A, Miura S, Nishizaki Y, Hiraki Y. Chondromodulin-I and tenomodulin are differentially expressed in the avascular mesenchyme during mouse and chick development. Cell Tissue Res. 2008;332:111–22.

    Article  CAS  PubMed  Google Scholar 

  21. Shukunami C, Hiraki Y. Chondromodulin-I and tenomodulin: the negative control of angiogenesis in connective tissue. Curr Pharm Des. 2007;13:2101–12.

    Article  CAS  PubMed  Google Scholar 

  22. Burgess R, Cserjesi P, Ligon KL, Olson EN. Paraxis: a basic helix-loop-helix protein expressed in paraxial mesoderm and developing somites. Dev Biol. 1995;168:296–306.

    Article  CAS  PubMed  Google Scholar 

  23. Wlodarski KH, Reddi AH. Alkaline phosphatase as a marker of osteoinductive cells. Calcif Tissue Int. 1986;39:382–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a research grant (Yoshimi Memorial TMP Grant, 2010) from the Japanese Society for Artificial Organs (JSAO).

Conflict of interest

The authors have declared that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Keiichi Miyamoto or Takashi Horiuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizutani, N., Kageyama, S., Yamada, M. et al. The behavior of ligament cells cultured on elastin and collagen scaffolds. J Artif Organs 17, 50–59 (2014). https://doi.org/10.1007/s10047-013-0736-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-013-0736-y

Keywords

Navigation