Skip to main content
Log in

On searching for an optimal threshold for morphological image segmentation

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Segmentation of images represents the first step in many of the tasks that pattern recognition or computer vision has to deal with. Therefore, the main goal of our paper is to describe a new method for image segmentation, taking into account some Mathematical Morphology operations and an adaptively updated threshold, what we call Morphological Gradient Threshold, to obtain the optimal segmentation. The key factor in our work is the calculation of the distance between the segmented image and the ideal segmentation. Experimental results show that the optimal threshold is obtained when the Morphological Gradient Threshold is around the 70% of the maximum value of the gradient. This threshold could be computed, for any new image captured by the vision system, using a properly designed binary metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Weszka JS (1978) A survey of threshold selection techniques. Comput Graphics Image Process 7(2):259–265

    Article  Google Scholar 

  2. Zhang YJ (1996) A survey on evaluation methods for image segmentation. Pattern Recogn Lett 29(8):1335–1346

    Google Scholar 

  3. Freixenet J, Muñoz X, Raba D, Marti J, Cufi X (2002) Yet another survey on image segmentation: region and boundary information integration. In: Proceedings of the 7th European conference on computer vision ECCV 2002. Lecture notes in computer science, vol 2352. Springer, Berlin, pp 408–422

  4. Paglieroni DW (2004) Design considerations for image segmentation quality assessment measures. Pattern Recogn Lett 37(8):1607–1617

    Google Scholar 

  5. Ruiz-Del-Solar J, Verschae R (2004) Robust skin segmentation using neighborhood information. In: Proceedings of the 2004 international conference on image processing ICIP 2004, IEEE, vol 1, pp 207–210

  6. Couprie M, Bezerra FN, Bertrand G (2001) Topological operators for grayscale image processing. J Electr Imaging 10(4):1003–1015

    Article  Google Scholar 

  7. Dokladal P, Bloch I, Couprie M, Ruijters D, Urtasun R, Garnero L (2003) Segmentation of 3D head MR images using morphological reconstruction under constraints and automatic selection of markers. Pattern Recogn Lett 36(10):2463–2478

    Google Scholar 

  8. Sclaroff S, Liu L (2001) Deformable shape detection and description via model-based region grouping. IEEE Trans Pattern Anal Mach Intell 23(5):475–489

    Article  Google Scholar 

  9. Arques P, Compañ P, Molina R, Pujol M, Rizo R (2003) Minimization of an energy function with robust features for image segmentation. Kybernetes 32(9/10):1481–1491

    Article  MATH  Google Scholar 

  10. Martin D, Fowlkes C, Malik J (2004) Learning to detect natural image boundaries using local brightness, color and texture cues. IEEE Trans Pattern Anal Mach Intell 26(5):530–549

    Article  Google Scholar 

  11. Ohya A, Kosaka A, Kak A (1998) Vision-based navigation by a mobile robot with obstacle avoidance using single-camera vision and ultrasonic sensing. IEEE Trans Robot Autom 14:969–978

    Article  Google Scholar 

  12. Winters N, Santos-Victor J (2002) Information sampling for vision-based robot navigation. Robot Autonom Syst 41:145–159

    Article  Google Scholar 

  13. Yuen DCK, MacDonald BA (2005) Vision-based localization algorithm based on landmark matching, triangulation, reconstruction, and comparison.. IEEE Trans Robot Autom 21(2):217–226

    Google Scholar 

  14. Wolf J, Burgard W, Burkhardt H (2002) Using an image retrieval system for vision-based mobile robot localization. In: Lew MS, Sebe N, Eakins JP (eds) International Conference on image and video retrieval (CIVR 2002). Lecture notes in computer science, vol 2383. Springer, Berlin, pp 108–119

    Google Scholar 

  15. Se S, Lowe DG, Little JJ (2005) Vision-based global localization and mapping for mobile robots. IEEE Trans Robot Autom 21(3):364–375

    Google Scholar 

  16. Pujol FA, García JM, Pujol M, Rizo R, Pujol MJ (2004) Selection of an automated morphological gradient threshold for image segmentation. In: Sanfeliu A, Martinez JF, Carrasco JA (eds) Progress in pattern recognition, image analysis and applications: 9th Iberoamerican congress on pattern recognition, CIARP 2004. Lecture notes in computer science, vol 3287. Springer, Berlin, pp 92–99

    Google Scholar 

  17. Lucchese L, Mitra SK (2001) Color image segmentation: a state-of-the-art survey. In: Proceedings of the Indian National Science Academy (INSA-A), vol 67, no 2, pp 207–221

  18. Zouagui T, Benoit-Cattin H, Odet C (2004) Image segmentation functional model. Pattern Recogn Lett 37(9):1785–1795

    MATH  Google Scholar 

  19. Brink AD (1989) Gray-level thresholding of images using a correlation criterion. Pattern Recogn Lett 9(5):335–341

    Article  MATH  Google Scholar 

  20. Maddah M, Zou KH, Wells WM, Kikinis R, Warfield SK (2004) Automatic optimization of segmentation algorithms through simultaneous truth and performance level estimation (STAPLE). In: Barillot C, Haynor DR, Hellier P (eds) Medical image computing and computer-assisted intervention MICCAI 2004: 7th international conference, Saint-Malo, France. Lecture notes in computer science, vol 3216. Springer, Berlin, pp 274–282

    Google Scholar 

  21. Puzicha J, Hofmann T, Buhmann J (1999) Histogram clustering for unsupervised image segmentation. In: Proceedings of the IEEE Computer Society conference on computer vision and pattern recognition, CVPR’99, vol 2, pp 602–608

  22. Saha PK, Udupa JK (2001) Optimum image thresholding via class uncertainty and region homogeneity. IEEE Trans Pattern Anal Mach Intell 23(7):689–706

    Article  Google Scholar 

  23. Donoho DL (1995) De-noising by soft-thresholding. IEEE Trans Inf Theory 41(3):613–627

    Article  MathSciNet  MATH  Google Scholar 

  24. Pollak I, Willsky AS, Krim H (2000) Image segmentation and edge enhancement with stabilized inverse diffusion equations. IEEE Trans Image Process 9(2):256–266

    Article  MATH  Google Scholar 

  25. Chen J, Sato Y, Tamura S (2000) Orientation space filtering for multiple orientation line segmentation. IEEE Trans Pattern Anal Mach Intell 22(5):417–429

    Article  Google Scholar 

  26. Colombo C, Comanducci D, Del Bimbo A (2006) Camera calibration with two arbitrary coaxial circles. In: Proceedings of the 9th European conference on computer vision ECCV 2006. Lecture notes in computer science, vol 3951. Springer, Berlin, pp 265–276

  27. Lobregt S, Viergever M (1995) A discrete dynamic contour model. IEEE Trans Med Imaging 14(1):12–24

    Article  Google Scholar 

  28. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331

    Article  Google Scholar 

  29. Chu CC, Aggarwal JK (1993) The integration of image segmentation maps using region and edge information. IEEE Trans Pattern Anal Mach Intell 15(12):1241–1252

    Article  Google Scholar 

  30. Bhalerao A, Wilson R (2001) Unsupervised image segmentation combining region and boundary estimation. Image Vis Comput 19(6):353–368

    Article  Google Scholar 

  31. Serra J (1982) Image analysis and mathematical morphology. Academic Press, New York

    MATH  Google Scholar 

  32. Serra J (1988) Image analysis and mathematical morphology: theoretical advances, vol. 2. Academic Press, London

    Google Scholar 

  33. Goutsias J, Vincent L, Bloomberg DS (2000) Mathematical morphology and its applications to image and signal processing. Kluwer Academic Press, Boston

    MATH  Google Scholar 

  34. Soille P (2003) Morphological image analysis: principles and applications. Springer, New York

    MATH  Google Scholar 

  35. d’Ornellas MC, van den Boomgaard R (2003) The state of art and future development of morphological software, towards generic algorithms. Int J Pattern Recogn Artif Intell 17(2):231–255

    Article  Google Scholar 

  36. Pina P, Ribeiro L, Muge F (2001) A mathematical morphology contribution to study some aspects of hydrogeological systems. Comput Geosci 27(9):1061–1070

    Article  Google Scholar 

  37. Pujol FA, García JM, Fuster A, Pujol M, Rizo R (2002) Use of mathematical morphology in real-time path planning. Kybernetes 31(1):115–123

    Article  MATH  Google Scholar 

  38. Basu M, Su M (2001) Image smoothing with exponential functions. Int J Pattern Recogn Artif Intell 15:735–752

    Article  Google Scholar 

  39. Ben Hamza A, Luque PL, Martínez J, Román R (1999) Removing noise and preserving details with relaxed median filters. J Math Imaging Vis 11:161–177

    Article  Google Scholar 

  40. Cardoso JS, Corte-Real L (2005) Toward a generic evaluation of image segmentation. IEEE Trans Image Process 14(11):1773–1782

    Article  Google Scholar 

  41. Shepp L, Vardi Y (1982) Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging 1(2):113–122

    Article  Google Scholar 

  42. Besag J (1986) On the statistical analysis of dirty pictures. J R Stat Soc B 48:259–302

    MathSciNet  MATH  Google Scholar 

  43. Oyama S, Tanaka K (2006) Learning a distance metric for object identification without human supervision. In: Knowledge discovery in databases: 10th European conference on principles and practice of knowledge discovery in databases, PKDD 2006. Lecture notes in computer science, vol 4213. Springer, Berlin, pp 609–616

  44. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 6(6):679–698

    Article  Google Scholar 

  45. Grimson WEL (1990) Object recognition by computer—the role of geometric constraints. MIT Press, Cambridge

    Google Scholar 

  46. Tagare HD, de Figueiredo RJP (1990) On the localization performance measure and optimal edge detection. IEEE Trans Pattern Anal Mach Intell 12(12):1186–1190

    Article  Google Scholar 

  47. Peli T, Malah D (1982) A study on edge detection algorithms. Comput Graphics Image Process 20:1–21

    Article  MATH  Google Scholar 

  48. van Vliet LJ, Young IT, Beckers GL (1989) A nonlinear laplace operator as edge detector in noisy images. Comput Vis Graphics Image Process 45:167–195

    Article  Google Scholar 

  49. Baddeley AJ (1992) An error metric for binary images. In: Forstner W, Ruwiedel S (eds) Robust computer vision: quality of vision algorithms. In: Proceedings, international workshop on robust computer vision. Wichmann, Karlsruhe, pp 59–78

  50. Dougherty ER (1991) Application of the Hausdorff metric in gray-scale Mathematical Morphology via truncated umbrae. J Vis Commun Image Represent 2:177–187

    Article  Google Scholar 

  51. Huttenlocher DP, Klanderman GA, Rucklidge WJ (1993) Comparing images using the Hausdorff distance. IEEE Trans Pattern Anal Mach Intell 14(9):850–853

    Article  Google Scholar 

  52. Geman S, Geman D (1984) Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6:721–741

    Article  MATH  Google Scholar 

  53. Geman D (1991) Random fields and inverse problems in imaging. Lecture notes in mathematics, vol 1427. Springer, Berlin, pp 113–193

  54. Li SZ (2001) Markov random field modeling in image analysis. Springer, New York

    MATH  Google Scholar 

  55. Modestino JW, Zhang J (1992) A Markov random field model-based approach to image interpretation. IEEE Transa Pattern Anal Mach Intell 14(6):606–615

    Article  Google Scholar 

  56. Arques P, Compañ P, Molina R, Pujol M, Rizo R (2002) A cybernetic approach to the multiscale minimization of energy function: grey level image segmentation. Kybernetes 31(3–4):596–608

    Article  MATH  Google Scholar 

  57. Suk M, Chung SM (1983) A new image segmentation technique based on partition mode test. Pattern Recogn Lett 16(5):469–480

    Google Scholar 

  58. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Sci Agric 220(4598):671–680

    MathSciNet  Google Scholar 

  59. Yalabik N, Yalabik C, Goktepe M, Atalay V (1998) Unsupervised texture based image segmentation by simulated annealing using Markov random field and Potts models. In: Proceedings of the 14th international conference on pattern recognition (ICPR’98), vol 1. IEEE Computer Society, Washington, DC, pp 820–822

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco A. Pujol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pujol, F.A., Pujol, M., Rizo, R. et al. On searching for an optimal threshold for morphological image segmentation. Pattern Anal Applic 14, 235–250 (2011). https://doi.org/10.1007/s10044-011-0215-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-011-0215-0

Keywords

Navigation