Skip to main content
Log in

Simulated reflectance spectra and point spread functions in database constructed by moderate grouping of nine layers in skin model

  • Special Section: Regular Paper
  • The 13th Japan-Finland Joint Symposium on Optics in Engineering (OIE'19), Espoo, Finland and Tallinn, Estonia
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

This paper presents a numerical study on simulated spectra and point spread functions in the database that we constructed by moderate grouping of nine layers in a skin model. The database is used for identification of a simulated skin reflectance spectrum which seems most closed to a certain target spectrum or a measured spectrum. On the basis of the properties of absorption and scattering coefficients in a nine-layered skin tissue model, we classify nine layers into two and three groups for changing values of the absorption and scattering coefficients, respectively, and then reflectance spectra are simulated by Monte Carlo method with these five groups to build reflectance spectral database. The desired spectrum is extracted from the database by using the root mean square error. To identify uniquely the most desirable spectrum among some similar spectra contained in the database, we propose additionally the use of a point spread function of reflected intensity on the skin surface. Simulated results demonstrate that this approach is promising to identify the most likely spectrum that is fit to the target spectrum. The finally identified spectrum in the database gives its absorption and scattering coefficients in each of the nine layers which are used to estimate skin conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dawson, J.B., Barker, D.J., Ellis, D.J., Grassam, E., Cotterill, J.A., Fisher, G.W., Feather, J.W.: A theoretical and experimental study of light absorption and scattering by in vivo skin. Phys. Med. Biol. 25, 695–709 (1980)

    Google Scholar 

  2. Feather, J.W., Hajizadeh-Saffar, M., Leslie, G., Dawson, J.B.: A portable scanning reflectance spectrophotometer using visible wavelengths for the rapid measurement of skin pigments. Phys. Med. Biol. 34, 807–820 (1989)

    Google Scholar 

  3. Harrison, D.K., Evans, S.D., Abbot, N.C., Beck, J.S., McCollum, P.T.: Spectrophotometric measurements of haemoglobin saturation and concentration in skin during the tuberculin reaction in normal human subjects. Clin. Phys. Physiol. Meas. 13, 349–363 (1992)

    Google Scholar 

  4. Newton, D.J., Harrison, D.K., Delaney, C.J., Beck, J.S., McCollum, P.T.: Comparison of macro- and micro-lightguide spectrophotometric measurements of microvascular haemoglobin oxygenation in the tuberculin reaction in normal human skin. Physiol. Meas. 15, 115–128 (1994)

    Google Scholar 

  5. Wallace, V.P., Crawford, D.C., Mortimer, P.S., Ott, R.J., Bamber, J.C.: Spectrophotometric assessment of pigmented skin lesion: methods and feature selection for evaluation of diagnostic performance. Phys. Med. Biol. 45, 735–751 (2000)

    Google Scholar 

  6. Stratonnikov, A.A., Loschenov, V.B.: Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra. J. Biomed. Opt. 6, 457–467 (2001)

    ADS  Google Scholar 

  7. Salomatina, E., Jiang, B., Novak, J., Yaroslavsky, A.N.: Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range. J. Biomed. Opt. 11(6), 064026 (2006)

    ADS  Google Scholar 

  8. Stamatas, G.N., Kollias, N.: In vivo documentation of cutaneous inflammation using spectral imaging. J. Biomed. Opt. 12(5), 051603 (2007)

    ADS  Google Scholar 

  9. Zonios, G., Dimou, A., Bassukas, I., Galaris, D., Tsolakidis, A., Kaxiras, E.: Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection. J. Biomed. Opt. 13(1), 014017 (2008)

    ADS  Google Scholar 

  10. Hirose, M., Toyota, S., Ojima, N., Ogawa-Ochiai, K., Tsumura, N.: Principal component analysis for surface reflection components and structure in facial images and synthesis of facial images for various ages. Opt. Rev. 24, 517–528 (2017)

    Google Scholar 

  11. Hamdy, O., Fathy, M., Al-Saeed, T.A., El-Azab, J., Solouma, N.H.: Estimation of optical parameters and fluence rate distribution in biological tissues via a single integrating sphere optical setup. Optik 140, 1004–1009 (2017)

    ADS  Google Scholar 

  12. Fukutomi, D., Ishii, K., Awazu, K.: Determination of the scattering coefficient of biological tissue considering the wavelength and absorption dependence of the anisotropy factor. Opt. Rev. 23, 291–298 (2016)

    Google Scholar 

  13. Shimada, M., Masuda, Y., Yamada, Y., Itoh, M., Takahashi, M., Yatagai, T.: Explanation of human skin color by multiple linear regression analysis based on the modified Lambert-Beer law. Opt. Rev. 7(4), 348–352 (2000)

    Google Scholar 

  14. Shimada, M., Yamada, Y., Itoh, M., Yatagai, T.: Melanin and blood concentration in human skin studied by multiple regression analysis: experiments. Phys. Med. Biol. 46, 2385–2395 (2001)

    Google Scholar 

  15. Shimada, M., Yamada, Y., Itoh, M., Yatagai, T.: Melanin and blood concentration in a human skin model studied by multiple regression analysis: assessment by Monte Carlo simulation. Phys. Med. Biol. 46, 2397–2406 (2001)

    Google Scholar 

  16. Konishi, I., Ito, Y., Sakauchi, N., Kobayashi, M., Tsunazawa, Y.: A new optical image for hemoglobin distribution in human skin. Opt. Rev. 10(6), 592–595 (2003)

    Google Scholar 

  17. Nishidate, I., Aizu, Y., Mishina, H.: Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation. J. Biomed. Opt. 9, 700–710 (2004)

    ADS  Google Scholar 

  18. Nishidate, I., Wiswadarma, A., Hase, Y., Tanaka, N., Maeda, T., Niizeki, K., Aizu, Y.: Non-invasive spectral imaging of skin chromophores based on multiple regression analysis aided by Monte Carlo simulation. Opt. Lett. 36, 3239–3241 (2011)

    ADS  Google Scholar 

  19. Spigulis, J., Oshina, I., Berzina, A., Bykov, A.: Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination. J. Biomed. Opt. 22(9), 091508 (2017)

    ADS  Google Scholar 

  20. Tsumura, N., Haneishi, H., Miyake, Y.: Independent-component analysis of skin color image. J. Opt. Soc. Am. A. 16, 2169–2176 (1999)

    ADS  Google Scholar 

  21. Zhang, R., Verkruysse, W., Choi, B., Viator, J.A., Jung, B., Svaasand, L.O., Aguilar, G., Nelson, J.S.: Determination of human skin optical properties from spectrophotometric measurements based on optimization by genetic algorithms. J. Biomed. Opt. 10(2), 024030 (2005)

    ADS  Google Scholar 

  22. Verkruysse, W., Zhang, R., Choi, B., Lucassen, G., Svaasand, L.O., Nelson, J.S.: A library based fitting method for visual reflectance spectroscopy of human skin. Phys. Med. Biol. 50, 57–70 (2005)

    Google Scholar 

  23. Magnain, C., Elias, M., Frigerio, J.: Skin color modelling using the radiative transfer equation solved by the auxiliary function method. J. Opt. Soc. Am. A 24(8), 2196–2205 (2007)

    ADS  Google Scholar 

  24. Magnain, C., Elias, M., Frigerio, J.: Skin color modelling using the radiative transfer equation solved by the auxiliary function method: inverse problem. J. Opt. Soc. Am. A 25(7), 1737–1743 (2008)

    ADS  Google Scholar 

  25. Ohtsuki, R., Tominaga, S., Tanno, O.: Multiple-reflection model of human skin and estimation of pigment concentrations. Opt. Rev. 19(4), 254–263 (2012)

    Google Scholar 

  26. Wang, L., Jacques, S.L., Zheng, L.Q.: MCML-Monte Carlo modeling of photon transport in multi-layered tissues. Comput. Methods Prog. Biomed. 47, 131–146 (1995)

    Google Scholar 

  27. Meglinski, I.V., Matcher, S.J.: Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions. Physiol. Meas. 23, 741–753 (2002)

    Google Scholar 

  28. Meglinski, I.V., Matcher, S.J.: Computer simulation of the skin reflectance spectra. Comput. Methods Prog. Biomed. 70, 179–186 (2003)

    Google Scholar 

  29. Maeda, T., Arakawa, N., Takahashi, M., Aizu, Y.: Monte Carlo simulation of spectral reflectance using a multilayered skin tissue model. Opt. Rev. 17, 223–229 (2010)

    Google Scholar 

  30. Das, K., Kobori, Y., Hashisaka, T., Ohya, T., Yuasa, T., Funamizu, H., Aizu, Y.: New library of spectral reflectance and point spread function developed by Monte Carlo simulation with nine-layered skin model. Proc. SPIE 11140, 1114001–1114202 (2019). https://doi.org/10.1117/12.2535451

    Article  Google Scholar 

  31. Das, K., Kobori, Y., Hashisaka, T., Ohya, T., Yuasa, T., Funamizu, H., Aizu, Y.: Investigation of skin conditions producing similar reflectance spectra but different point spread functions in Monte Carlo simulation. Diffuse Opt. Spectrosc. Imaging VII Proc. SPIE 11074 (2019). https://doi.org/10.1117/12.2526716

  32. Wilson, B.C., Adam, G.: A Monte Carlo model for the absorption and flux distributions of light in tissue. Med. Phys. 10, 824–830 (1983)

    Google Scholar 

  33. Bonner, R.F., Nossal, R., Havlin, S., Weiss, G.H.: Model for photon migration in turbid biological media. J. Opt. Soc. Am. A 4, 423–432 (1987)

    ADS  Google Scholar 

  34. Keijzer, M., Jacques, S.L., Prahl, S.A., Welch, A.J.: Light distributions in artery tissue: Monte Carlo simulations for finite-diameter laser beams. Laser Surg. Med. 9, 148–154 (1989)

    Google Scholar 

  35. Flock, S.T., Patterson, M.S., Wilson, B.C., Wyman, D.R.: Monte Carlo modeling of light propagation in highly scattering tissue: I. Model predictions and comparison with diffusion theory. IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989)

  36. Prahl, S.A., Keijzer, M., Jacques, S.L., Welch, A.J.: A Monte Carlo model of light propagation in tissue. SPIE Inst. Ser. 5, 102–111 (1989)

    Google Scholar 

  37. Yaroslavsky, I.V., Tuchin, V.V.: Light transport in multilayered scattering media. Monte Carlo modeling. Opt. Spectrosc. 72, 934–939 (1992)

    Google Scholar 

  38. Henyey, L.G., Greenstein, J.L.: Diffuse radiation in the galaxy. Astrophys. J. 93, 70–83 (1941)

    ADS  MATH  Google Scholar 

  39. Graaff, R., Dassel, A.C.M., Koelink, M.H., De Mul, F.F.M., Aarnoudse, J.G., Zijlstra, W.G.: optical properties of human dermis in vitro and in vivo. Appl. Opt. 32(4), 435–447 (1993)

    ADS  Google Scholar 

  40. Tuchin, V.V.: Laser light scattering in biomedical diagnostics and therapy. J. Laser Appl. 5(2), 43–60 (1993)

    ADS  Google Scholar 

  41. Tuchin, V.V., Utz, S.R., Yaroslavsky, I.V.: Tissue optics, light distribution, and Spectroscopy. Opt. Eng. 33(10), 3178–3188 (1994)

    ADS  Google Scholar 

  42. Churmakov, D.Y., Meglinski, I.V., Greenhalgh, D.A.: Amending of fluorescence sensor signal localization in human skin by matching of the refractive index. J. Biomed. Opt. 9(2), 339–346 (2004)

    ADS  Google Scholar 

  43. Marchesini, R., Bertoni, A., Andreola, S., Melloni, E., Sichirollo, A.E.: Extinction and absorption coefficients and scattering phase functions of human tissue in vitro. Appl. Opt. 28(12), 2318–2324 (1989)

    ADS  Google Scholar 

  44. Cheong, W., Prahl, S.A., Welch, A.J.: A review of the optical properties of biological tissues. J. Quantum Electron. 26(12), 2166–2185 (1990)

    ADS  Google Scholar 

  45. Zonios, G., Bykowski, J., Kollias, N.: Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy. J. Invest. Dermatol. 117, 1452–1457 (2001)

    Google Scholar 

  46. Aizu, Y., Maeda, T., Kuwahara, T., Hirao, T.: Skin image reconstruction using Monte Carlo based color generation. Proc. SPIE 7851, 78510N (2010)

    ADS  Google Scholar 

  47. Aizu, Y., Maeda, T., Kuwahara, T., Hirao, T.: Spectral reflectance fitting based on Monte Carlo simulation using a multi-layered skin tissue model. In: SPIE diffuse optical imaging III, proc. SPIE 8088, 80880P (2011). https://doi.org/10.1117/12.889626

  48. ISO/TR 16066:2003: Graphic technology–standard object colour spectra database for colour reproduction evaluation. https://www.iso.org/standard/37358.html. Accessed 10 Oct 2019

  49. Kawasaki, K., Yamanishi, K., Yamada, H.: Age-related morphometric changes of inner structures of the skin assessed by in vivo reflectance confocal microscopy. Int. J. Dermatol. 54(3), 295–301 (2015). https://doi.org/10.1111/ijd.12220

    Article  Google Scholar 

  50. Ogura, Y., Atsuta, K., Hase, E., Minamikawa, T., Yasui, T.: Photonic-crystal-fiber-coupled, hand-held, polarization-resolved second-harmonic-generation microscope for in vivo visualization of dermal collagen fibers in human skin. IEEE Quant. Electron. 25(1), 6801007 (2019). https://doi.org/10.1109/JSTQE.2018.2865779

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihisa Aizu.

Ethics declarations

Conflict of interest

The authors have no relevant financial interests in this article and no potential conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, K., Yuasa, T., Nishidate, I. et al. Simulated reflectance spectra and point spread functions in database constructed by moderate grouping of nine layers in skin model. Opt Rev 27, 233–245 (2020). https://doi.org/10.1007/s10043-020-00579-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-020-00579-8

Keywords

Navigation