Skip to main content
Log in

Analysis of thermal property in hollow-core polarization maintaining photonic crystal fibers

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

We study the thermal-induced variance of effective refractive indices (ERIs) and birefringence in several kinds of polarization maintaining fibers (PMF) and carry out numerical simulations by utilizing the finite element method (FEM). Responses under varying temperatures in these fibers are analyzed thoroughly. According to our computational results, hollow-core photonic crystal fibers (HC-PCFs) exhibit much more stable temperature-dependent ERIs and birefringence among these PMFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liao, C.R., Hu, T.Y., Wang D.N.: Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing. Opt. Express, 20(20), 22813–22818 (2012)

    Article  ADS  Google Scholar 

  2. Rong, Q., Qiao, X., Du, Y. et al.: In-fiber quasi-Michelson interferometer with a core–cladding-mode fiber end-face mirror. Appl. Optics, 52(7), 1441–1447 (2013)

    Article  ADS  Google Scholar 

  3. Zhou, J., Liao, C., Wang, Y. et al: Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer. Opt. Express, 22(2), 1680–1686 (2014)

    Article  ADS  Google Scholar 

  4. Zou, W., He, Z., Hotate, K.: Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber. Opt. Express, 17(3), 1248–1255(2009)

    Article  ADS  Google Scholar 

  5. Chung, S., Kim, J., Yu, B. A. et al.: A fiber Bragg grating sensor demodulation technique using a polarization maintaining fiber loop mirror. IEEE. Photonic. Tech. L, 13(12), 1343–1345 (2001)

    Article  ADS  Google Scholar 

  6. Liu, Z., Liu, Y., Du, J., et al.: Switchable triple-wavelength erbium-doped fiber laser using a single fiber Bragg grating in polarization-maintaining fiber. Opt. Commun, 279(1), 168–172 (2007)

    Article  ADS  Google Scholar 

  7. Knight, J.C., Birks, T.A., Russell, P.S.J. et al.: Properties of photonic crystal fiber and the effective index model. J. Opt. Soc. Am. A, 15(3), 748–752 (1998)

    Article  ADS  Google Scholar 

  8. Knight, J.C., Birks, T. A., Russell, P.S.J. et al.: All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett, 21(19), 1547–1549 (1996)

    Article  ADS  Google Scholar 

  9. Wang, Y., Wang, D.N., Liao, C. R. et al.: Temperature-insensitive refractive index sensing by use of micro Fabry–Pérot cavity based on simplified hollow-core photonic crystal fiber. Opt. Lett, 38(3), 269–271 (2013)

    Article  ADS  Google Scholar 

  10. Kim, D.H., Kang, J.: Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity. Opt. Express, 12(19), 4490–4495 (2004)

    Article  ADS  Google Scholar 

  11. Dong, X., Tam, H.Y., Shum, P.: Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer. Appl. Phys. Lett, 90(15), 151113 (2007)

    Article  ADS  Google Scholar 

  12. Dong, B., Zhou, D.P., Wei, L.: Temperature insensitive all-fiber compact polarization-maintaining photonic crystal fiber based interferometer and its applications in fiber sensors. J. Lightwave. Technol, 28(7), 1011–1015 (2010)

    Article  ADS  Google Scholar 

  13. Mindlin, R.D., Goodman, L. E.: The optical equations of three-dimensional photoelasticity. J. Appl. Phys, 20(1), 89–95 (1949)

    Article  ADS  MATH  Google Scholar 

  14. Philippoff, W.: Stress-optical analysis of fluids. Ind. Eng Chem 51(7), 883–884 (1959)

    Article  Google Scholar 

  15. Sasaki, Y., Hosaka, T., Horiguchi, M., Noda, J.: Design and fabrication of low-loss and low-crosstalk polarization-maintaining optical fibers. J. Lightwave. Technol. 4(8), 1097–1102 (1986)

    Article  ADS  Google Scholar 

  16. Suzuki, K., Kubota, H., Kawanishi, S., Tanaka, M., Fujita, M.: Optical properties of a low-loss polarization-maintaining photonic crystal fiber. Opt. Express 9(13), 676–680 (2001)

    Article  ADS  Google Scholar 

  17. Kan C., Chen-ge W., Jin-fang W., et al.: A type of centered porous-defected polarization maintaining photonic crystal fiber. J. Optoelectron. Laser 26(7), 1406–1411 (2015)

    Google Scholar 

  18. Chen, K, Wang,C., Hu, H., et al.: A single-mode polarization maintaining hollow core photonic bandgap fiber. IEEE Photonics Technol. Lett. 28(22), 2617–2620 (2016)

    Article  ADS  Google Scholar 

  19. Wong, C.P, Bollampally, R.S.: Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. J. Appl. Polym. Sci, 74(14), 3396–3403 (1999)

    Article  Google Scholar 

  20. Ifuku, S., Morooka, S., Nakagaito, A. N., Morimoto, M., Saimoto, H.: Preparation and characterization of optically transparent chitin nanofiber/(meth) acrylic resin composites. Green. Chem, 13(7), 1708–1711 (2011)

    Article  Google Scholar 

  21. Bertholds, A., Dandliker, R.: Determination of the individual strain-optic coefficients in single-mode optical fibres. J. Lightwave. Technol. 6(1), 17–20 (1998)

    Article  ADS  Google Scholar 

  22. Mousavi, L., Sabaeian, M., Nadgaran, H.: Numerical modelling of self-heating effects on guiding modes of high-power photonic crystal fibre lasers. Lithuanian. J. Phys. 53(2) (2013)

  23. Li, L, Zhang, D, Wen, X, et al.: FFPI-FBG hybrid sensor to measure the thermal expansion and thermo-optical coefficient of a silica-based fiber at cryogenic temperatures. Chin. Optics Lett. 13(10), 100601 (2015)

    Article  ADS  Google Scholar 

  24. Tohge, N, Moore, G.S, Mackenzie, J. D.: Structural developments during the gel to glass transition. J. Non-Cryst. Solids 63(1), 95–103 (1984)

    Article  ADS  Google Scholar 

  25. Palik, E.D.: Handbook of optical constants of solids, vol. 3. Academic Press, San Diego, CA (1998)

  26. Primak, W, Post, D.: Photoelastic constants of vitreous silica and its elastic coefficient of refractive index. J. Appl. Phys, 30(5), 779–788 (1959)

    Article  ADS  Google Scholar 

  27. Ghosh, G.: Handbook of optical constants of solids: Handbook of Thermo-optic coefficients of optical materials with applications. Academic Press, Boston, MA (1998)

  28. Digonnet, M, Blin, S, Kim, H K, et al.: Sensitivity and stability of an air-core fibre-optic gyroscope. Meas. Sci. Technol., 18(10), 3089 (2007)

    Article  ADS  Google Scholar 

  29. Song, N, Sun, Z, Song, J, et al.: Analysis of shupe effect in polarization-maintaining photonic crystal fiber-optic gyroscope. Optical Rev., 21(3), 276–279 (2014)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 61601405, the Shanghai Aerospace Science and Technology Innovation Fund under Grant No. SAST2016086, the Joint Fund of Equipment Pre-research and Ministry of Education under Grant No. 6141A02022310.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan She.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Cg., She, X., Chen, K. et al. Analysis of thermal property in hollow-core polarization maintaining photonic crystal fibers. Opt Rev 24, 291–296 (2017). https://doi.org/10.1007/s10043-017-0313-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-017-0313-3

Keywords

Navigation