Skip to main content
Log in

Optical characteristics of rounded silver nanoprisms

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

We analyzed numerical optical characteristics of silver nanoprisms with rounded corners using the three-dimensional finite-difference time-domain method. The enhancement of the electric field was decreased from 240 to 13 times by introducing a large radius of curvature at the nanoprism corners such that it became a cylinder. This caused the optical multi-mode to change to single dipole mode. In the largest local electric field enhancement using the bowtie structure, which consisted of a pair of nanoprisms with rounded corners (the curvature radius and the gap distance were 8.66 and 1 nm, respectively), the electric field was enhanced by a factor of 360 at the hotspot. The bowtie structure that has non-zero curvature radii produces a larger electric field enhancement than does the single nanoprism without a curvature radius. Furthermore, the numerical simulation elucidates that the change of the curvature radius and the change of the gap distance have the same influence on the electric field enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stewart, M.E., Anderton, C.R., Thompson, L.B., Maria, J., Gray, S.K., Rogers, J.A., Nuzzo, R.G.: Nanostructured Plasmonic Sensors. Chem. Rev. 108, 494 (2008)

    Article  Google Scholar 

  2. He, L., Musick, M.D., Nicewarner, S.R., Salinas, F.G., Benkovic, S.J., Natan, M.J., Keating, C.D.: Colloidal Au-Enhanced Surface Plasmon Resonance for Ultrasensitive Detection of DNA Hybridization. J. Am. Chem. Soc. 122, 9071 (2000)

    Article  Google Scholar 

  3. Sugawa, K., Tanaka, D., Ichikawa, T., Takeshima, N.: Development of Plasmon Resonance Sensing Based on Alkylthiol-Coated Triangular Silver Nanoplates on Glass Plates. Jpn. J. Appl. Phys. 52, 04CK06 (2013)

    Article  Google Scholar 

  4. Yu, N., Cubukcu, E., Diehl, L., Bour, D., Corzine, S., Zhu, J., Höfler, G., Crozier, K.B., Capasso, F.:Bowtie plasmonic quantum cascade laser antenna. Opt. Express 15, 13272 (2007)

    Article  ADS  Google Scholar 

  5. Liu, N., Tang, M.L., Hentschel, M., Giessen, H., Alivisatos, A.P.:Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater. 10, 631 (2011)

    Article  ADS  Google Scholar 

  6. Ihara, M., Kanno, M., Inoue, S.:Photoabsorption-enhanced dye-sensitized solar cell by using localized surface plasmon of silver nanoparticles modified with polymer. Physica E 42, 2867 (2010)

    Article  ADS  Google Scholar 

  7. Zarick, H.F., Hurd, O., Webb, J.A., Hungerford, C., Erwin, W.R., Bardhan, R.:Enhanced Efficiency in Dye-Sensitized Solar Cells with Shape-Controlled Plasmonic Nanostructures. ACS Photonics 1, 806 (2014)

    Article  Google Scholar 

  8. Jin, R., Cao, Y., Mirkin, C.A., Kelly, K.L., Schatz, G.C., Zheng, J.G.:Photoinduced Conversion of Silver Nanospheres to Nanoprisms. Science 294, 1901 (2001)

    Article  ADS  Google Scholar 

  9. Inoue, D., Miura, A., Nomura, T., Fujikawa, H., Sato, K., Ikeda, N., Tsuya, D., Sugimoto, Y., Koide, Y.:Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes. Appl. Phys. Lett. 98, 093113 (2011)

    Article  ADS  Google Scholar 

  10. Kuwata, H., Tamaru, H., Esumi, K., Miyano, K.:Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation. Appl. Phys. Lett. 83, 4625 (2003)

    Article  ADS  Google Scholar 

  11. Okamoto, T., Yamaguchi, I., Kobayashi, T.:Local plasmon sensor with gold colloid monolayers deposited upon glass substrates. Opt. Lett. 25, 372 (2000)

    Article  ADS  Google Scholar 

  12. Kottmann, J.P., Martin, O.J.F., Smith, D.R., Schultz, S.:Non-regularly shaped plasmon resonant nanoparticle as localized light source for near-field microscopy. J. Microsc. 202, 60 (2001)

    Article  MathSciNet  Google Scholar 

  13. Futamata, M., Maruyama, Y., Ishikawa, M.:Local Electric Field and Scattering Cross Section of Ag Nanoparticles under Surface Plasmon Resonance by Finite Difference Time Domain Method. J. Phys. Chem. B 107, 7607 (2003)

    Article  Google Scholar 

  14. Schmidt, F.P., Ditlbacher, H., Hofer, F., Krenn, J.R., Hohenester, U.:Morphing a Plasmonic Nanodisk into a Nanotriangle. Nano Lett. 14, 4810 (2014)

    Article  ADS  Google Scholar 

  15. Xu, H., Aizpurua, J., Ka¨ll, M., Apell, P.:Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys. Rev. E 62, 4318 (2000)

    Article  ADS  Google Scholar 

  16. Hao, E., Schatz, G.C.:Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 120, 357 (2004)

    Article  ADS  Google Scholar 

  17. Yamaguchi, K., Inoue, T., Fujii, M., Haraguchi, M., Okamoto, T., Fukui, M., Seki, S., Tagawa, S.:Electric Field Enhancement of Nano Gap of Silver Prisms. Chin. Phys. Lett. 24, 2934 (2007)

    Article  ADS  Google Scholar 

  18. Nicoli, F., Verschueren, D., Klein, M., Dekker, C., Jonsson, M.P.:DNA Translocations through Solid-State Plasmonic Nanopores. Nano Lett. 14, 6917 (2014)

    Article  ADS  Google Scholar 

  19. Kollmann, H., Piao, X., Esmann, M., Becker, S.F., Hou, D., Huynh, C., Kautschor, L.O., Bosker, G., Vieker, H., Beyer, A., Golzhauser, A., Park, N., Vogelgesang, R., Silies, M., Lienau, C.:Toward Plasmonics with Nanometer Precision: Nonlinear Optics of Helium-Ion Milled Gold Nanoantennas. Nano Lett. 14, 4778 (2014)

    Article  ADS  Google Scholar 

  20. Yokota, Y., Ueno, K., Misawa, H.:Essential nanogap effects on surface-enhanced Raman scattering signals from closely spaced gold nanoparticles. Chem. Commun. 47, 3505 (2011)

    Article  Google Scholar 

  21. Savage, K.J., Hawkeye, M.M., Esteban, R., Borisov, A.G., Aizpurua, J., Baumberg, J.J.:Revealing the quantum regime in tunnelling plasmonics. Nature 491, 574 (2012)

    Article  ADS  Google Scholar 

  22. Yamaguchi, K., Inoue, T., Fujii, M., Ogawa, T., Matsuzaki, Y., Okamoto, T., Haraguchi, M., Fukui, M.:Characteristics of light intensity enhancement of a silver nanoprism with rounded corners. J. Microsc. 229, 545 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number 15H03546 and 15K13977.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Mori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mori, T., Yamaguchi, K., Tanaka, Y. et al. Optical characteristics of rounded silver nanoprisms. Opt Rev 23, 260–264 (2016). https://doi.org/10.1007/s10043-016-0188-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-016-0188-8

Keywords

Navigation