Skip to main content
Log in

Indoor anti-occlusion visible light positioning systems based on particle filtering

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

As one of the most popular categories of mobile services, a rapid growth of indoor location-based services has been witnessed over the past decades. Indoor positioning methods based on Wi-Fi, radio-frequency identification or Bluetooth are widely commercialized; however, they have disadvantages such as low accuracy or high cost. An emerging method using visible light is under research recently. The existed visible light positioning (VLP) schemes using carrier allocation, time allocation and multiple receivers all have limitations. This paper presents a novel mechanism using particle filtering in VLP system. By this method no additional devices are needed and the occlusion problem in visible light would be alleviated which will effectively enhance the flexibility for indoor positioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sheng, Z.H.O.U.: IEEE Trans on Consumer Electronics 52, 555 (2006)

    Article  Google Scholar 

  2. Tan, K., Law, C.: Int. Conf. on ICSP, p 1 (2007)

  3. Saad, M.M.: IEEE Trans Instrum Meas 61, 1561 (2012)

    Article  Google Scholar 

  4. Yanying, G.: IEEE Commun. Surveys Tutor 11, 13 (2009)

    Article  Google Scholar 

  5. O’brien D, Zeng, L.: Proc. PIMRC, p 1 (2008)

  6. Armstrong, J., Sekercioglu, Y.: Comm Magazine 51, 68 (2013)

    Article  Google Scholar 

  7. Thomas, Q., Wang, Sekercioglu, Y.A.: J. Lightwave Technol. 20, 3302 (2013)

    Google Scholar 

  8. Yang, Se-Hoon, Jung, Eun-Mi: Comm Lett 17, 1834 (2013)

    Article  Google Scholar 

  9. Sertthin, C., Fujii, Takeo: GLOBECOM, p 1, (2011)

  10. Hyun-Seung, K., Deok-Rae, K.: J. Lightwave Technol. 31(1), 134 (2013)

    Article  ADS  Google Scholar 

  11. Arnaud, D., Adam, M. J.: Oxford handbook of nonlinear filtering p 656 (2011)

  12. Doucet, A., Godsill, S.: Statistics and computing, p 197 (2000)

  13. Gustafsson, F.: MEAS 25, 53 (2010)

    Google Scholar 

  14. Arulampalam, M.S.: IEEE Trans on Signal Processing 50, 174 (2002)

    Article  ADS  Google Scholar 

  15. Andrieu, C., Doucet, A., Holenstein, R.: J. Royal Statistical Society 72, 269 (2010)

    Article  MathSciNet  Google Scholar 

  16. Oliver, N.M., Rosario, B., Pentland, A.P.: IEEE Trans PAMI 22, 831 (2000)

    Article  Google Scholar 

  17. Rahaim, M.: GLOBECOM, p 1249, (2012)

  18. Chinnapat S.: GLOBECOM, p 1, (2011)

  19. Yang, S.-H.: Elec Lett 49, 54 (2013)

    Article  Google Scholar 

  20. Zhou, Z., Mohsen K.: Proc. optical engineering, p 1 (2012)

  21. Sidenbladh H., Black, M.: IEEE ICCV, p 709 (2001)

Download references

Acknowledgments

This research was supported in part by National 973 Program (No. 2013CB329205), National Science Foundation of China (No. 61401032), and National 863 Program (No. 2013AA013601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, M., Huang, Z., Li, J. et al. Indoor anti-occlusion visible light positioning systems based on particle filtering. Opt Rev 22, 294–298 (2015). https://doi.org/10.1007/s10043-015-0068-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-015-0068-7

Keywords

Navigation