Skip to main content
Log in

Design of optical coupling systems between two-dimensional quasi-stadium laser diodes and single-mode optical fibers

  • Regular Papers
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Optical coupling systems between a two-dimensional quasi-stadium laser diode and single-mode optical fibers using gradient-index rod lenses are designed for both stable and unstable laser resonators for the first time. A novel numerical approach using a combination of the extended Fox-Li calculation method and Gaussian beam transformations is proposed. In the case of a stable laser resonator, two kinds of beam propagation modes appear, namely the axis mode, in which an optical beam propagates along the cavity axis, and the ring mode, in which optical beams propagate along the diamond-shaped trajectory. The coupling efficiencies are found to be 54% for the axis mode and 52% for the ring mode. In contrast, an unstable laser resonator exhibits complicated modes, in which several highly directional beams are emitted from the end mirrors. The total coupling efficiency for these output beams is calculated to be 9.6%. The 3-dB tolerances for the lens pitch and alignment angles of the gradient-index rod lenses are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan: Appl. Phys. Lett. 60 (1992) 289.

    Article  ADS  Google Scholar 

  2. A. F. J. Levi, R. E. Slusher, S. L. McCall, S. J. Pearton, and W. S. Hobson: Appl. Phys. Lett. 62 (1993) 2021.

    Article  ADS  Google Scholar 

  3. S. Ando, N. Kobayashi, and H. Ando: Jpn. J. Appl. Phys. 34 (1995) L4.

    Article  ADS  Google Scholar 

  4. C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho: Science 280 (1998) 1556.

    Article  ADS  Google Scholar 

  5. T. Fukushima and T. Harayama: IEEE J. Sel. Top. Quantum Electron. 10 (2004) 1039.

    Article  Google Scholar 

  6. A. Mekis, J. U. Nöckel, C. Chen, A. D. Stone, and R. K. Chang: Phys. Rev. Lett. 75 (1995) 2682.

    Article  ADS  Google Scholar 

  7. C. Gmachl, E. E. Narimanov, F. Capasso, J. N. Baillargeon, and A. Y. Cho: Opt. Lett. 27 (2002) 824.

    Article  ADS  Google Scholar 

  8. T. Fukushima, T. Harayama, T. Miyasaka, and P. O. Vaccaro: J. Opt. Soc. Am. B 21 (2004) 935.

    Article  ADS  Google Scholar 

  9. T. Tanaka, M. Hentschel, T. Fukushima, and T. Harayama: Phys. Rev. Lett. 98 (2007) 033902.

    Google Scholar 

  10. M. Lebental, J. S. Lauret, R. Hierle, and J. Zyss: Appl. Phys. Lett. 88 (2006) 031108.

    Google Scholar 

  11. W. Fang, H. Cao, and G. S. Solomon: Appl. Phys. Lett. 90 (2007) 081108.

    Google Scholar 

  12. M. Lebental, J. S. Lauret, J. Zyss, C. Schmit, and E. Bogomolny: Phys. Rev. A 75 (2007) 033806.

    Google Scholar 

  13. S. Shinohara, T. Fukushima, and T. Harayama: Phys. Rev. A 77 (2008) 033807.

    Google Scholar 

  14. T. Fukushima, T. Tanaka, and T. Harayama: Appl. Phys. Lett. 87 (2005) 191103.

    Google Scholar 

  15. T. Fukushima and T. Harayama: CLEO/QELS Conf. Tech. Dig., 2007, JWA127.

  16. M. Choi, T. Tanaka, T. Fukushima, and T. Harayama: Appl. Phys. Lett. 88 (2006) 211110.

    Google Scholar 

  17. T. Fukushima: J. Lightwave Technol. 18 (2000) 2208.

    Article  ADS  Google Scholar 

  18. T. Fukushima, T. Harayama, P. Davis, P. O. Vaccaro, T. Nishimura, and T. Aida: Opt. Lett. 27 (2002) 1430.

    Article  ADS  Google Scholar 

  19. T. Fukushima, T. Harayama, P. Davis, P. O. Vaccaro, T. Nishimura, and T. Aida: Opt. Lett. 28 (2003) 408.

    Article  ADS  Google Scholar 

  20. T. Fukushima, T. Harayama, and J. Wiersig: Phys. Rev. A 73 (2006) 023816.

    Google Scholar 

  21. T. Fukushima and T. Harayama: Proc. IEEE LEOS Annu. Meet. Conf., 2006, p. 931.

  22. T. Fukushima, T. Tanaka, and T. Harayama: Opt. Lett. 32 (2007) 3397.

    Article  ADS  Google Scholar 

  23. A. E. Siegman: Lasers (University Science Books, California, 1986) Chap. 19, pp. 744–750.

    Google Scholar 

  24. A. E. Siegman: Lasers (University Science Books, California, 1986) Chap. 16, pp. 632–633.

    Google Scholar 

  25. K. Kawano: Hikariketugokei no Kiso to Oyo (Fundamentals and Application of Optical Coupling Systems) (Gendai Kougaku-sha, Tokyo, 1991) p. 23 [in Japanese].

    Google Scholar 

  26. T. Sakamoto: J. Mod. Opt. 41 (1994) 951.

    Article  MathSciNet  ADS  Google Scholar 

  27. M. Saruwatari and K. Nawata: Appl. Opt. 18 (1979) 1847.

    Article  ADS  Google Scholar 

  28. T. Fukushima, S. A. Biellak, Y. Sun, and A. E. Siegman: Opt. Express 2 (1998) 21.

    Article  ADS  Google Scholar 

  29. A. G. Fox and T. Li: Bell Syst. Tech. J. 40 (1961) 453.

    Google Scholar 

  30. D. Marcuse: Bell Syst. Tech. J. 56 (1977) 703.

    Google Scholar 

  31. T. Sakamoto: Appl. Opt. 31 (1992) 5184.

    Article  ADS  Google Scholar 

  32. M. Saruwatari and T. Sugie: IEEE J. Quantum Electron. 17 (1981) 1021.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukushima, T., Handa, Y. & Miyahara, K. Design of optical coupling systems between two-dimensional quasi-stadium laser diodes and single-mode optical fibers. OPT REV 16, 540–547 (2009). https://doi.org/10.1007/s10043-009-0106-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-009-0106-4

Keywords

Navigation