Skip to main content

Advertisement

Log in

The effects of urbanization on the groundwater system of the Kabul shallow aquifers, Afghanistan

Les effets de l’urbanisation sur le système d’eaux souterraines des aquifères peu profonds de Kaboul, Afghanistan

Los efectos de la urbanización en el sistema de aguas subterráneas de los acuíferos someros de Kabul, Afganistán

城市化对阿富汗喀布尔浅层含水层地下水系统的影响

اثرات شهرنشنیی بر سیستم آب زیرزمینی آبخوان‌های کم عمق کابل، افغانستان

Os efeitos da urbanização no sistema de águas subterrâneas dos aquíferos rasos de Cabul, Afeganistão

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The capital city of Afghanistan, Kabul, has experienced rapid urbanization since the end of 2001. The aim of this study is to evaluate the impact of rapid urbanization on the Kabul aquifer system, which is the main source of water for domestic, agricultural and industrial use in the area. Satellite imagery, groundwater levels and rainfall historical data were analyzed in conjunction with physico-chemical parameters that were measured at 27 water wells located in the Kabul Plain in 2020. Land-cover maps indicate that the urban surface area increased by 40% between 2000 and 2020, whilst the agricultural surface area simultaneously decreased by 32%. Meanwhile the Kabul Plain has globally experienced a severe decrease in groundwater levels (-0.8 m/year on average, and a fall of 60 m in some places) due to overabstraction, which has also seen changes in groundwater flow directions. Hydrochemistry, on the other hand, reveals that chloride concentrations and salinity increased throughout the aquifer between 2005 and 2020, while the nitrate concentration decreased in most places of the Kabul Plain over the considered period. The results suggest that rapid urbanization has had serious detrimental effects on both groundwater quantity and quality. Without urgent preventive policy and the implementation of effective practices, groundwater resource depletion and groundwater quality deterioration in the Kabul shallow aquifers are likely to continue in the future.

Résumé

La capitale de l’Afghanistan, Kaboul, connaît une urbanisation rapide depuis la fin de l’année 2001. L’objectif de cette étude est d’évaluer l’impact de l’urbanisation rapide de l’aquifère de Kaboul, qui constitue la source principale d’eau pour les usages domestiques, agricoles et industriels dans la région. Les images satellites, les niveaux des eaux souterraines et les données historiques des précipitations ont été analysés conjointement avec les paramètres physico-chimiques qui ont été mesurés dans 27 puits d’eau situés dans la plaine de Kaboul en 2020. Les cartes d’occupation des sols indiquent que la surface urbaine a augmenté de 40% entre les années 2000 et 2020, tandis que la superficie des terrains agricoles simultanément a diminué de 32%. Entre temps, la plaine de Kaboul a globalement connu une grave diminution du niveau des eaux souterraines (–0.8 m/an en moyenne, et avec une chute de 60 m en certains endroits) liée à la surexploitation, qui a également entraîné des modifications dans les directions d’écoulement des eaux souterraines. L’hydrochimie, quant à elle, révèle que les concentrations de chlorure et la salinité ont augmenté dans l’ensemble de l’aquifère entre les années 2005 et 2020, tandis que la concentration en nitrate a diminué dans la plupart des endroits de la plaine de Kaboul au cours de la période considérée. Les résultats suggèrent que l’urbanisation rapide a eu de sérieux effets néfastes sur la quantité et la qualité des eaux souterraines. Sans une politique préventive urgente et la mise en œuvre de pratiques efficaces, l’épuisement des ressources en eau souterraine et la détérioration de la qualité des eaux souterraines dans les aquifères peu profonds de Kaboul risquent de se poursuivre à l’avenir.

Resumen

La capital de Afganistán, Kabul, ha experimentado una rápida urbanización desde el comienzo del gobierno post-talibán a fines de 2001. El objetivo de este estudio es evaluar el impacto de la rápida urbanización en el acuífero de Kabul, que es la principal fuente de agua para uso doméstico, agrícola e industrial de la zona. Se analizaron las imágenes de satélite, los niveles de las aguas subterráneas y los datos históricos de las precipitaciones junto con los parámetros físico-químicos que se midieron en 27 pozos de agua situados en la llanura de Kabul en 2020. Los mapas de uso del suelo indican que la superficie urbana aumentó un 40% entre 2000 y 2020, mientras que la superficie agrícola disminuyó simultáneamente un 32%. Mientras tanto, la llanura de Kabul ha experimentado globalmente un grave descenso del nivel de las aguas subterráneas (–0.8 m/año de media, y una caída de 60 m en algunos lugares) debido a la sobreexplotación, que también ha visto cambiar las direcciones del flujo de las aguas subterráneas. La hidroquímica, por su parte, revela que las concentraciones de cloruro y la salinidad aumentaron en todo el acuífero entre 2005 y 2020, mientras que la concentración de nitrato disminuyó en la mayoría de los lugares de la llanura de Kabul durante el periodo considerado. Los resultados sugieren que la rápida urbanización ha tenido graves efectos perjudiciales tanto en la cantidad como en la calidad de las aguas subterráneas. Sin una urgente política preventiva y la aplicación de prácticas adecuadas, es probable que el agotamiento de los recursos hídricos subterráneos y el deterioro de su calidad en los acuíferos poco profundos de Kabul continúen en el futuro.

摘要

自2001年末以来, 阿富汗首都喀布尔经历了快速的城市化。本研究旨在评估快速的城市化对喀布尔含水层 (该区生活用水、农业用水和工业用水的主要水源) 的影响。2020年, 结合喀布尔平原27眼水井的物理化学参数, 对卫星影像、地下水位和历史降水数据进行了分析。土地覆盖图显示, 在2000年至2020年间, 喀布尔城市用地面积增加了40%, 而农业用地面积同时减少了32%。与此同时, 由于地下水过度抽取, 喀布尔平原经历了严重的全域地下水位下降 (平均–0.8 米/年, 一些地方水位下降可达60米), 地下水流向也因此发生了改变。另一方面, 水化学结果显示, 2005年至2020年间整个含水层的氯离子浓度和盐度增加, 而喀布尔平原大部分地区的硝酸根离子浓度降低。结果表明, 快速的城市化对地下水水量和水质均造成了严重的威胁。如果没有紧急预防政策和有效的实施措施, 喀布尔浅层含水层地下水资源枯竭和地下水水质恶化很可能今后还将持续。

چکیده

کابل پایتخت افغانستان پس از پایان سال ۲۰۰۰ میلادی شهرنشینی سریع را تجربه کرده است. هدف این پژوهش ارزیابی تأثیر شهرنشینی سریع بر آبخوان‌ کابل می باشد که منبع اصلی آب برای مصارف خانگی، کشاورزی است. تصاویر ماهواره‌ای، داده‌‌های سطح ایستابی و بارندگی همراه با پارامتر‌های فیزیکی و شیمیایی ۲۷ حلقه چاه آب واقع دشت کابل که در سال ۲۰۲۰ سنجش شده اند، مورد تجزیه و تحلیل قرار گرفته اند. نقشه‌های پوشش اراضی نشان می‌دهند که بین سال‌های ۲۰۰۰ تا ۲۰۲۰ پوشش اراضی شهری ۴۰ درصد افزایش یافته، درحالی‌که ۳۲ درصد پوشش اراضی کشاورزی تدریجاً کاهش یافته است. درعین حال دشت کابل به علت بر داشت بیش از حد، افت شدید سطح ایستابی (به‌طور میانگین ۸/۰ متر و افت ۶۰ متر در برخی جاها) را تجربه کرده است و شاهد تغییر جریان آب زیرزمینی نیز بوده است. نتایج نشان‌ می‌دهد که شهرنشینی سریع اثرات نامطلوب جدی بر کمیت و کیفیت آب زیرزمینی داشته است. بدون راهکار پیشگیرانه فوری و تطبیق روش‌های مؤثر، کاهش منابع آب زیرزمینی و بدتر شدن کیفیت آب زیرزمینی آبخوان‌های کم عمق کابل در آینده ادامه خواهد یافت.

Resumo

A capital do Afeganistão, Cabul, tem experimentado uma rápida urbanização desde o final de 2001. O objetivo deste estudo é avaliar o impacto da rápida urbanização no aquífero de Cabul, que é a principal fonte de água para uso doméstico, agrícola e industrial na área. Imagens de satélite, níveis de águas subterrâneas e dados históricos de chuvas foram analisados em conjunto com parâmetros físico–químicos que foram medidos em 27 poços localizados na planície de Cabul em 2020. Mapas de ocupação da terra indicam que a área de superfície urbana aumentou 40% entre 2000 e 2020, enquanto a área de superfície agrícola diminuiu simultaneamente em 32%. Enquanto isso, a planície de Cabul tem experimentado globalmente uma severa redução nos níveis de águas subterrâneas (–0.8 m/ano em média, e uma queda de 60 m em alguns lugares) devido à superexplotação, que também tem demonstrado mudanças nas direções de fluxo de águas subterrâneas. A hidroquímica, por outro lado, revela que as concentrações de cloreto e a salinidade aumentaram ao longo do aquífero entre 2005 e 2020, enquanto a concentração de nitrato diminuiu na maioria dos locais da planície de Cabul durante o período considerado. Os resultados sugerem que a rápida urbanização teve sérios efeitos prejudiciais tanto na quantidade quanto na qualidade das águas subterrâneas. Sem uma política preventiva urgente e a implementação de práticas eficazes, o esgotamento dos recursos hídricos subterrâneos e a deterioração da qualidade das águas subterrâneas nos aquíferos rasos de Cabul provavelmente continuarão no futuro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Afghanistan Public Policy Research Organization (APPRO) (2012) Migration and urban development in Kabul: classification or accommodation? Newcomers and host communities in district 5, 7 and 13 in Kabul, Afghanistan. Afghanistan Public Policy Research Organization, Kabul

  • APHA/AWWA/WEF (2017) Standard methods for the examination of water and wastewater. 23rd edition. America Public Health Association, American Water Works Association, and Water Environment Federation, Washington, DC

  • Amiri BA, Lukumwena N (2018) An overview of informal settlement upgrading strategies in Kabul city and the need for an integrated multi-sector upgrading model. SCIRP 6(3):348–365. https://doi.org/10.4236/cus.2018.63019

    Article  Google Scholar 

  • Barbé D (2013) Population displacement and urban transition in Kabul City: current spatial structure, social issues and recommendations for a new development plan. Sciences Po-Fall 2013

  • Bertaud A (2005) Urban land management in Afghanistan Kabul urban development current city structure. Spatial Issue, Recommendations on Urban Planning, pp 2–30

  • Bohannon RG (2010a) Geologic and topographic maps of the Kabul North 30′×60′ quadrangle, Afghanistan. US Geol Surv Sci Invest Map 3120, pamphlet, 2 map sheets, scale 1: 100,000, 34 pp

  • Bohannon RG (2010b) Geologic and topographic maps of the Kabul South 30′×60′ quadrangle, Afghanistan. US Geol Surv Sci Invest Map 3137, pamphlet, 2 map sheets, scale 1: 100,000, 34 pp

  • Brati MO, Ishihara MI, Higashi O (2019) Groundwater level reduction and pollution in relation to household water management in Kabul, Afghanistan. Sustain Water Resour Manag 5:1315–1325. https://doi.org/10.1007/s40899-019-00312-7

    Article  Google Scholar 

  • Broshears RE, Akbari MA, Chornack MP, Mueller DK, Ruddy BC (2005) Inventory of groundwater resources in the Kabul Basin, Afghanistan. US Geol Surv Sci Invest Rep 2005-5090

  • Choi B, Yun S, Yu S, Lee P, Park S, Chae G et al (2005) Hydrochemistry and urban groundwater in Seoul, South Korea: effects of land use and pollutant recharge. Environ Geol 48:979–990

    Article  Google Scholar 

  • Dash JP, Sarangi A, Ruggieri G (2010) Spatial variability of groundwater depth and quality parameters in the National Capital territory of Delhi. Environ Manage 45:640–650

    Article  Google Scholar 

  • Dong S, Samsonov S, Yin H, Ye S, Cao Y (2013) Time-series analysis of subsidence associated with rapid urbanization in Shanghai, China measured with SBAS InSAR method. Environ Earth Sci 72:677–691. https://doi.org/10.1007/s12665-013-2990-y

    Article  Google Scholar 

  • Fan AM, Steinberg VE (1996) Health implications of nitrate and nitrate in drinking water: an update on methemoglobinemia occurrence and reproductive and developmental toxicity. Regul Toxicol Pharmacol 23:35–43

    Article  Google Scholar 

  • Farahmand A, Hussaini MS, Zaryab A, Aqili SW (2021) Evaluation of hydrogeoethics approach for sustainable management of groundwater resources in the upper Kabul sub-basin, Afghanistan. Sustain Water Resour Manag 7:48. https://doi.org/10.1007/s40899-021-00525-9

    Article  Google Scholar 

  • Fewtrell L (2004) Drinking-water nitrate, methemoglobinemia, and global burden of disease: a discussion. Environ Health Perspect 112:1371–1374

    Article  Google Scholar 

  • Foster S (2020) Global policy overview of groundwater in urban development: a tale of 10 cities. Water 12:456. https://doi.org/10.3390/w12020456

    Article  Google Scholar 

  • Grischek T, Nestler W, Piechniczek D, Fishcher T (1996) Urban groundwater in Dresden, Germany. Hydrogeol J 4(1):48–62. https://doi.org/10.1007/s100400050088

    Article  Google Scholar 

  • Graniel CE, Morris BL, Carrillo-Rivera JJ (1999) Effects of urbanization on groundwater resources of Merida, Yucatan, Mexico. Environ Geol 37(4):303–312. https://doi.org/10.1007/s002540050388

    Article  Google Scholar 

  • Gulis G, Czompolyova M, Cerhan JR (2002) An ecologic study of nitrate in municipal drinking water and cancer incidence in Trnava district, Slovakia. Environ Res Sec A 88:182–187

    Article  Google Scholar 

  • Hardison EC, O’Driscoll MA, DeLoatch JP, Howard RJ, Brinson MM (2009) Urban land use, channel incision, and water table decline along coastal plain streams, North Carolina. JAWRA J Am Water Resour Assoc 45(4):1032–1046. https://doi.org/10.1111/j.1752-1688.2009.00345.x

    Article  Google Scholar 

  • Hoque MA, Hoque MM, Ahmed KM (2007) Declining groundwater level and aquifer dewatering in Dhaka metropolitan area, Bangladesh: causes and quantification. Hydrogeol J 15:1523–1534. https://doi.org/10.1007/s10040-007-0226-5

    Article  Google Scholar 

  • Houben G, Tünnermeier T, Eqrar N, Himmelsbach T (2009a) Hydrogeology of the Kabul Basin (Afghanistan), part II: groundwater geochemistry. Hydrogeol J 17:935–948. https://doi.org/10.1007/s10040-008-0375-1

    Article  Google Scholar 

  • Houben G, Niard N, Tünnermeier T, Himmelsbach T (2009b) Hydrogeology of the Kabul Basin (Afghanistan), part I: aquifers and hydrology. Hydrogeol J 17:665–677. https://doi.org/10.1007/s10040-008-0377-z

    Article  Google Scholar 

  • Hussain F, Hussain R, Wu R-S, Abbas T (2019) Rainwater harvesting potential and utilization for artificial recharge of groundwater using recharge wells. Processes 7(9):623. https://doi.org/10.3390/pr7090623

    Article  Google Scholar 

  • Japan International Cooperation Agency (JICA) (2011) Draft Kabul city master plan: product of Technical Cooperation Project for Promotion of Kabul Metropolitan Area Development Sub Project for Revising the Kabul City master plan. JICA, Tokyo

  • Japan International Cooperation Agency (JICA) (2013) Feasibility study on urgent water supply resources development for Kabul metropolitan area. JICA, Tokyo

  • Jawadi HA, Sagin J, Snow DD (2020) A detailed assessment of groundwater quality in the Kabul Basin, Afghanistan, and suitability for future development. Water 12:2890. https://doi.org/10.3390/w12102890

    Article  Google Scholar 

  • Jeong CH (2001) Effects of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea. J Hydrol 253:194–210. https://doi.org/10.1016/S0022-1694(01)00481-4

    Article  Google Scholar 

  • Jia X, O’Connor D, Hou D, Jin Y et al (2019) Groundwater depletion and contamination: spatial distribution of groundwater resources sustainability in China. Sci Total Environ 672:551–562. https://doi.org/10.1007/s10040-008-0332-z

    Article  Google Scholar 

  • Jiao JJ, Leung C, Ding G (2008) Changes to the groundwater system, from 1888 to present in a highly-urbanized costal area in Hong Kong, China. Hydrogeology J 16:1527–1539. https://doi.org/10.1007/s10040-008-0332-z

    Article  Google Scholar 

  • Kendall C (1998) Tracing nitrogen sources and cycling in catchments. In: Kendall C, McoDonnell JH (eds) Isotope tracers in catchment hydrology. Elsevier, Amsterdam

    Google Scholar 

  • Kendall C, Eelliot EM, Wankel SD (2007) Tracing anthropogenic inputs of nitrogen to ecosystems, chap 12. In: Michener RH, Lajtha K (eds) Stable isotopes in ecology and environmental science, 2nd edn. Blackwell, Oxford, pp 375–449

  • Khazaei E, Mackay R, Warner JW (2004) The effects of urbanization on groundwater quantity and quality in the Zahedan aquifer, southeast Iran. Water Int 29(2):178–188

    Article  Google Scholar 

  • Konikow FK, Kendy E (2005) Groundwater depletion: a global problem. Hydrogeol J 13:317–320. https://doi.org/10.1007/s10040-004-0411-8

    Article  Google Scholar 

  • Landell Mills (2020a) Regional groundwater model, TA 8969. AFG: Kabul Managed Aquifer Recharge Project Preparation, Landell Mills, Kabul

  • Landell Mills (2020b) The feasibility of scaling-up Managed Aquifer Recharge (MAR) Technology in Kabul City. AFG: Kabul Managed Aquifer Recharge Project Preparation, Landell Mills, Kabul

  • Mack TJ, Akbari MH, Ashoor MP, Chornack TB et al (2010) Conceptual model of water resources in the Kabul Basin, Afghanistan. US Geol Sur Sci Invest Rep 2009-5262

  • Mahaqi A, Mehiqi M, Rahimzadeh M, Hosseinzadeh J, Moheghi MM, Moheghy MA (2021) Dominant geochemical reactions and hazardous metal contamination status in the Kabul’s aquifers, Afghanistan. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-020-03098-w

    Article  Google Scholar 

  • Malik VK, Singh RK, Singh SK (2010) Impact of urbanization on groundwater of Gurgaon district Haryana India. Int J Rural Dev Manag Stud 5(1):45–57

    Google Scholar 

  • McDonald RI, Weber K, Padowski J, Flörke M et al (2014) Montgomery M. Water on an urban planet: urbanization and the reach of urban water infrastructure. Glob Environ Chang 27:96–105. https://doi.org/10.1016/j.gloenvcha.2014.04.022

    Article  Google Scholar 

  • McFarlance DJ (1984) The effects of urbanization on groundwater quantity and quality in Perth, Western Australia. PhD Thesis, University of Western Australia, Australia. https://research-repository.uwa.edu.au/en/publications/effects-of-urbanization-on-groundwater-quantity-and-quality-in-pe. Accessed January 2022

  • Meldebekova G, Yu C, Li Z, Song C (2020) Quantifying ground subsidence associated with aquifer overexploitation using Space-Borne Radar interferometry in Kabul, Afghanistan. Remote Sens 12(15):2461. https://doi.org/10.3390/rs12152461

    Article  Google Scholar 

  • Minning M, Moeck C, Radny D, Schirmer M (2017) Impact of urbanization on groundwater recharge rates Dubendorf, Switzerland. J Hydrol. https://doi.org/10.1016/j.jhydrol.2017.09.058

    Article  Google Scholar 

  • Mohanavelu A, Kasiviswanathan KS, Mohanasundaram S, Ilampooranan I et al (2020) Trends and non-stationarity in groundwater level change in rapidly developing Indian cites. Water 12(11):3209. https://doi.org/10.3390/w12113209

    Article  Google Scholar 

  • Morris BL, Seddique AA, Ahmed KM (2003) Response of the Dupi Tila aquifer to intensive pumping in Dhaka, Bangladesh. Hydrogeol J 11:496–503

    Article  Google Scholar 

  • Naik PK, Tambe JA, Dehury BN, Tiwari AN (2008) Impact of urbanization on the groundwater regime in a fast-growing city in central India. Environ Monit Assess 146:339–373. https://doi.org/10.1007/s10661-007-0084-6

    Article  Google Scholar 

  • National Statistic and Information Authority (NSIA) (2021) Estimated population of Afghanistan 2020–21. National Statistic and Information Authority, Kabul

  • Nejatijahromi N, Nassery HR, Hosono T, Nakhaei M, Alijani F, Okumura A (2019) Groundwater nitrate contamination in an area using urban wastewaters for agricultural irrigation under arid climate condition, southeast of Tehran, Iran. Agric Water Manag 221:397–414. https://doi.org/10.1016/j.agwat.2019.04.015

    Article  Google Scholar 

  • Noori AR, Singh SK (2021a) Status of groundwater resource potential and its quality at Kabul, Afghanistan: a review. Environ Earth Sci 80:654. https://doi.org/10.1007/s12665-021-09954-3

    Article  Google Scholar 

  • Noori AR, Singh SK (2021b) Spatial and temporal trend analysis of groundwater levels and regional groundwater drought assessment of Kabul, Afghanistan. Environ Earth Sci 80:698. https://doi.org/10.1007/s12665-021-10005-0

    Article  Google Scholar 

  • Ogrinc N, Tamše S, Zavadlav S, Vrzel J, Jin L (2019) Evaluation of geochemical processes and nitrate pollution sources at the Ljubljansko Polje aquifer (Slovenia): a stable isotope perspective. Sci Total Environ 646:1588–1600. https://doi.org/10.1016/j.scitotenv.2018.07.245

    Article  Google Scholar 

  • Oiro S, Comte J-C, Soulsby C, MachDonald A, Mwakamba C (2020) Depletion of groundwater resources under rapid urbanization in Africa: recent and future trends in the Nairobi Aquifer System, Kenya. Hydrogeol J 28:2635–2656. https://doi.org/10.1007/s10040-020-02236-5

    Article  Google Scholar 

  • Paiman Z, Noori AR (2019) Evaluation of wastewater collection and disposal in Kabul city and its environmental impacts. Modern Environ Sci Eng 5(5):451–458. https://doi.org/10.15341/mese(2333-2581)/05.05.2019/012

    Article  Google Scholar 

  • Panno SV, Hackley KC, Kelly WR, Hwang HH (2006) Isotopic evidence of nitrate sources and denitrification in the Mississippi River, Illinois. J Environ Qual 35(2):495–504

    Article  Google Scholar 

  • Ramos-Leal JA, Noyola-Medrano C, Tapia-Silva FO (2010) Aquifer vulnerability and groundwater quality in mega cities: case of the Mexico Basin. Environ Earth Sci 61:1309–1320. https://doi.org/10.1007/s12665-009-0434-5

    Article  Google Scholar 

  • Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460:999–1002

    Article  Google Scholar 

  • Rogers P (1994) Hydrology and water quality. Changes in land use and land cover: a global perspective. Cambridge University Press, Cambridge, 231 pp

  • Saffi MH (2011) Groundwater natural resources and quality concern in Kabul Basin, Afghanistan. DACAAR, Kabul

    Google Scholar 

  • Saffi MH (2019) National alarming on groundwater natural storage depletion and water quality deterioration of Kabul City and immediate response to the drinking water crises. DACAAR, Kabul

    Google Scholar 

  • Sahil K, Bhardwaj SK (2020) Impact of rapid urbanization on groundwater’s quality: An investigation of toxic elements concentrations in urban areas of Himachal Pradesh. Int J Chem Stud 9:563–571. https://doi.org/10.22271/chemi.2021.v9.i1h.11288

    Article  Google Scholar 

  • Sahu P, Michael HA, Voss CI, Pradip KS (2013) Impacts on groundwater recharge areas of megacity pumping: analysis of potential contamination of Kolkata, India, water supply. Hydrol Sci J 58(6):1340–1360. https://doi.org/10.1080/02626667.2013.813946

    Article  Google Scholar 

  • Schirmer M, Leschik S, Musolff A (2013) Current research in urban hydrogeology: a review. Adv Water Resour 51:280–291. https://doi.org/10.1016/j.advwatres.2012.06.015

    Article  Google Scholar 

  • Sharp JM Jr (2010) The impacts of urbanization on groundwater systems and recharge. AQUAmundi Am01008:051–056. https://doi.org/10.4409/Am-004-10-0008

  • Shroder J, Ahmadzai SJ (2016) Transboundary water resources in Afghanistan: climate change and land-use implications. Elsevier, Amsterdam

  • Stumm W, Morgan JJ (2012) Aquatic chemistry: chemical equilibria and rates in natural water. Vol. 126. John Wiley & Sons

  • Takizawa S (2008) Groundwater management in Asian cities: technology and policy for sustainability. Springer, Japan

    Book  Google Scholar 

  • United Nations (2021) Kabul, Afghanistan metro area population 1950–2021. https://www.macrotrends.net/cities/20002/kabul/population. Accessed January 2022

  • Wafa W, Hairan MH, Waizy H (2020) The impacts of urbanization on Kabul city’s groundwater quality. Int J Adv Sci 29(4):10796–10809

    Google Scholar 

  • Wakode HB, Baier K, Jha R, Azzam R (2017) Impact of urbanization on groundwater recharge and urban water balance for the city of Hyderabad, India. Int Soil Water Conserv Res 6(1):51–62. https://doi.org/10.1016/j.iswcr.2017.10.003

    Article  Google Scholar 

  • WHO (World Health Organization) (2017) Guideline for drinking-water quality, 4th edition, incorporating the 1st addendum. WHO, Geneva. https://doi.org/10.1016/S1462-0758(00)00006-6

  • Zaryab A, Noori AR, Wegerich K, Kløve B (2017) Assessment of water quality and quantity trends in Kabul aquifers with an outline for future drinking water supplies. CAJWR 3:3–11

    Google Scholar 

  • Zaryab A, Nassery HR, Alijani F (2021) Identifying sources of groundwater salinity and major hydrogeochemical processes in the Lower Kabul Basin aquifer, Afghanistan. Environ Sci Process Impacts 23:1589–1599. https://doi.org/10.1039/D1EM00262G

    Article  Google Scholar 

  • Zhou Y, Wang L, Liu J, Li W, Zheng Y (2012) Options of sustainable groundwater development in Beijing Plain, China. Phys Chem Earth 47–48:99–113. https://doi.org/10.1016/j.pce.2011.09.001

    Article  Google Scholar 

Download references

Acknowledgements

The authors express sincere thanks to the Ministry of Energy and Water of Afghanistan and Afghanistan Civil Aviation Authority (ACAA) for providing rainfall and groundwater level data of the city of Kabul. The authors thank the US Geological Survey (USGS) for sharing hydrochemical data of Kabul Basin. Also, the authors would like to acknowledge two anonymous reviewers for their careful review and their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Nassery.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaryab, A., Nassery, H.R. & Alijani, F. The effects of urbanization on the groundwater system of the Kabul shallow aquifers, Afghanistan. Hydrogeol J 30, 429–443 (2022). https://doi.org/10.1007/s10040-021-02445-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-021-02445-6

Keywords

Navigation