Skip to main content

Advertisement

Log in

Development of a spreadsheet-based model for transient groundwater modelling

Élaboration d’un modèle basé sur une feuille de calcul pour la modélisation transitoire des eaux souterraines

Desarrollo de un modelo basado en hojas de cálculo para el modelado transitorio del agua subterránea

基于电子表格的非稳定地下水模拟模型开发

Desenvolvimento de um modelo em planilha eletrônica para modelagem transiente de águas subterrâneas

  • Technical Note
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Understanding and modelling the passage of groundwater is important for a wide range of environmental and earth science disciplines. The science of groundwater modelling is mature, and advanced modelling algorithms are routinely implemented, for example via the widely used MODFLOW software. However, for the non-specialist scientist or student, the fundamentals of such software can be difficult to comprehend, whilst the algorithms are arguably too complex to be easily applied for many applications which require integration of a groundwater model with climate, surface-water, soil or ecological data. In this context, a spreadsheet-based groundwater model (A2016), capable of solving transient groundwater behaviour in multiple spatial dimensions, was developed. Inter-comparison tests investigating nine transient groundwater scenarios were performed between MODFLOW, A2016 and the Time-dependent Groundwater Modeling using Spreadsheet Simulation (TGMSS) model. Results demonstrated that A2016 is directly comparable to MODFLOW, with identical hydraulic heads in all model experiments. TGMSS was not able to accurately simulate hydraulic heads for any of the model experiments. A groundwater–lake interaction scenario was identified for which MODFLOW will produce unrealistic results, due to the way conductance beneath lakes is determined. Applying a specified saturated thickness approximation for the region beneath the lake resulted in improved lake–groundwater interactions. A2016 is potentially useful for educational purposes and as a tool for groundwater experiments by non-specialists, as it is modular in nature and incorporates MODFLOW terminology and techniques.

Résumé

La compréhension et la modélisation de l’écoulement des eaux souterraines sont importantes pour un large éventail des disciplines des sciences de la terre et de l’environnement. La science de la modélisation des eaux souterraines est mature, et des algorithmes avancés de modélisation sont systématiquement mis en œuvre, par exemple via le logiciel MODFLOW largement utilisé. Cependant, pour le scientifique ou l’étudiant non spécialisé, les notions fondamentales d’un tel logiciel peuvent être difficiles à comprendre, tandis que les algorithmes sont sans doute trop complexes pour être facilement appliqués pour de nombreuses applications nécessitant l’intégration d’un modèle des eaux souterraines avec des données climatiques, d’eaux de surface, des sols ou écologiques. Dans ce contexte, un modèle d’eaux souterraines basé sur une feuille de calcul (A2016), capable de résoudre le comportement transitoire des eaux souterraines dans de multiples dimensions spatiales, a été développé. Des tests d’inter-comparaison portant sur neuf scénarios transitoires d’eaux souterraines ont été effectués entre MODFLOW, A2016 et le modèle de modélisation des eaux souterraines dépendant du temps à l’aide d’une feuille de calcul (TGMSS). Les résultats ont démontré que A2016 est directement comparable à MODFLOW avec des charges hydrauliques identiques pour toutes les expériences de modélisation. TGMSS n’a pas été en mesure de simuler avec précision les charges hydrauliques pour l’une des expériences de modélisation. Un scénario d’interaction eaux souterraines – lac a été identifié pour lequel MODFLOW produira des résultats irréalistes, en raison de la façon dont la conductance sous les lacs est déterminée. L’application d’une approximation spécifique d’épaisseur saturée pour la région située sous le lac a entraîné une amélioration des interactions lac – eaux souterraines. A2016 est potentiellement utile à des fins éducatives, et comme un outil pour des expériences hydrogéologiques par des non-spécialistes, car il est de nature modulaire et incorpore les terminologie et techniques de MODFLOW.

Resumen

La comprensión y el modelado del flujo del agua subterránea es importante para una amplia gama de disciplinas de las ciencias de la tierra y ambientales. La ciencia del modelado del agua subterránea es madura, y los algoritmos avanzados se implementan rutinariamente, por ejemplo, a través del software MODFLOW, ampliamente utilizado. Sin embargo, para el científico o estudiante no especializado, los fundamentos de dicho software pueden ser difíciles de comprender, mientras que los algoritmos son demasiado complejos para ser aplicados fácilmente en muchas aplicaciones que requieren la integración de un modelo de agua subterránea con datos climáticos, de aguas superficiales, de suelos o ecológicos. En este contexto, se desarrolló un modelo basado en una hoja de cálculo (A2016), capaz de resolver el comportamiento transitorio del agua subterránea en múltiples dimensiones espaciales. Se realizaron pruebas de comparación que investigaron nueve escenarios transitorios entre MODFLOW, A2016 y el modelo Time-dependent Groundwater Modeling using Spreadsheet Simulation (TGMSS). Los resultados demostraron que el A2016 es directamente comparable con el MODFLOW con cargas hidráulicas idénticas en todos los experimentos de los modelos. TGMSS no pudo simular con precisión las cargas hidráulicas para ninguno de los experimentos del modelo. Se identificó un escenario de interacción agua subterránea-lago para el cual MODFLOW produjo resultados poco realistas, debido a la forma en que se determina la conductancia bajo los lagos. La aplicación de una aproximación de espesor saturado específico para la región debajo del lago resultó en mejores interacciones entre el lago y el agua subterránea. A2016 es potencialmente útil para fines educativos, y como herramienta para experimentos de aguas subterráneas por parte de no especialistas, ya que es de naturaleza modular e incorpora la terminología y técnicas de MODFLOW.

摘要

理解和模拟地下水运动对于许多环境和地球科学学科非常重要。地下水模拟技术相当成熟,先进的模拟算法已经定期地被开发,例如广泛使用的MODFLOW软件。然而,对于非专业学者或学生来说,这类软件的基本原理难以理解因而难以用于实际,因为地下水模型需要气候,地表水,土壤或生态方面的数据。在此背景下,开发了能获知多维度非稳定地下水行为的基于电子表格的地下水模型(A2016)。利用9组非稳定地下水流情景,对MODFLOW,A2016和依赖时间的使用电子表格模拟(TGMSS)模型模拟的结果进行了相互比较测试。结果表明,在所有模型实验中,A2016与MODFLOW能给出相似的水头分布。对于所有的模型实验,TGMSS无法精确模拟水头。由于湖底传导率处理方式差异,由此MODFLOW将产生不切实际的结果,设计一组地下水与湖泊相互作用的情景。对湖底区采用专门的饱和厚度近似值可以改善湖泊-地下水的相互作用。A2016可用于教育目的,也可作为非专业人员进行地下水实验的工具,因为它本身是模块化的,并涵盖了MODFLOW术语和技术。

Resumo

Compreender e modelar o fluxo das águas subterrâneas é importante para inúmeras disciplinas científicas das ciências da terra e ambiental. A ciência da modelagem de águas subterrâneas já é bem estabelecida, e algoritmos de modelagem avançados são rotineiramente implementados, como por exemplo, através do uso do software amplamente utilizado MODFLOW. No entanto, para o cientista não especialista ou estudante, os fundamentos de tal software podem ser difíceis de compreender, enquanto os algoritmos são discutivelmente muito complexos para serem facilmente implementados em muitas aplicações que requerem integração de um modelo de águas subterrâneas com clima, águas superficiais, solo ou dados ecológicos. Neste contexto, foi desenvolvido um modelo de águas subterrâneas em planilha eletrônica (A2016), capaz de resolver o comportamento transitório de águas subterrâneas em múltiplas dimensões espaciais. Testes comparativos, que investigaram nove cenários transitórios de águas subterrâneas, foram realizados entre MODFLOW, A2016 e o modelo de modelagem de águas subterrâneas dependente do tempo usando simulação em planilhas (TGMSS - Time-dependent Groundwater Modeling using Spreadsheet Simulation). Os resultados demonstraram que o A2016 é comparável diretamente ao MODFLOW com cargas hidráulicas idênticas em todos os modelos testes adotados. O TGMSS não conseguiu simular com precisão as cargas hidráulicas em nenhum dos modelos testes adotados. Foi identificado um cenário de interação água subterrânea com lago para o qual o MODFLOW produziu resultados irrealistas, devido à forma como a condutância no leito dos lagos foi determinada. Aplicando uma aproximação de espessura saturada especificada para a região abaixo do lago resultou em melhores interações lago - água subterrânea. O A2016 é potencialmente útil para fins educacionais e como uma ferramenta para modelos de águas subterrâneas utilizado por não especialistas, por ser construído de forma modular e incorporar a terminologia e técnicas do MODFLOW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akhter MG, Ahmad Z, Khan KA (2006) Excel based finite difference modeling of ground water flow. J Himal Earth Sci 39:49–53

    Google Scholar 

  • Almeida CN, Roehrig J, Wendland E (2014) Development and integration of a groundwater simulation model to an open geographic information system. J Am Water Resour Assoc 50:101–110. https://doi.org/10.1111/jawr.12119

    Article  Google Scholar 

  • Anderson M, Bair E (2001) The power of spreadsheet models. Proceedings, MODFLOW 2001 and Other Modeling Odysseys Conference, pp 815–822

  • Anderson MP, Woessner WW, Hunt RJ (2015) Applied groundwater modeling: simulation of flow and advective transport. Academic Press, San Diego

    Google Scholar 

  • Ankor MJ (2018) Transient groundwater modelling using spreadsheets for education and model prototyping. https://doi.org/10.17632/r6hcbkp53n.4; https://data.mendeley.com/datasets/r6hcbkp53n/4. Accessed 8 Aug 2018

  • Bair ES, Lahm TD (2006) Practical problems in groundwater hydrology. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Elemer B, Sz P, Aniko T, Attila K (2010) Complex scientific analysis in geothermal exploration in the Pannonian Basin. Proceedings of the World Geothermal Congress 2010, Bali, Indonesia, 25–29 April 2010

  • Fenske JP, Leake S, Prudic DE (1996) Documentation of a computer program (RES1) to simulate leakage from reservoirs using the modular finite-difference ground-water flow model (MODFLOW), US Geological Survey Open-File Report 96-36

  • Harbaugh AW (2005) MODFLOW-2005, the US Geological Survey modular ground-water model: the ground-water flow process: US Department of the Interior, US Geological Survey Reston, VA, USA

  • Holzbecher E, Sorek S (2006) Numerical models of groundwater flow and transport. In: Anderson MG, McDonnell JJ (ed) Encyclopedia of Hydrological Sciences. Wiley. https://doi.org/10.1002/0470848944.hsa157

  • Huang Y, Yu Z, Zhou Z (2013) Simulating groundwater inflow in the underground tunnel with a coupled fracture-matrix model. J Hydrol Eng 18:1557–1561. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000455

    Article  Google Scholar 

  • Jones RN, McMahon TA, Bowler JM (2001) Modelling historical lake levels and recent climate change at three closed lakes, Western Victoria, Australia (c.1840–1990). J Hydrol 246:159–180

    Article  Google Scholar 

  • Karahan H, Ayvaz MT (2005a) Time-dependent groundwater modeling using spreadsheet. Comput Appl Eng Educ 13:192–199

    Article  Google Scholar 

  • Karahan H, Ayvaz MT (2005b) Transient groundwater modeling using spreadsheets. Adv Eng Softw 36:374–384

    Article  Google Scholar 

  • Mahmud M (1996) Spreadsheet solutions to Laplace’s equation: seepage and flow net. J Teknol 25:53–67

    Google Scholar 

  • McDonald MG, Harbaugh AW (2003) The history of MODFLOW. Groundwater 41:280–283

    Article  Google Scholar 

  • Neville CJ, Tonkin MJ (2001) Representation of multiaquifer wells in MODFLOW. Proceedings of Modflow 2001 Conference at the International Ground Water Modeling Center, Golden, Colorado, pp 51–59

  • Ohlendorf C, Fey M, Gebhardt C, Haberzettl T, Lücke A, Mayr C, Schäbitz F, Wille M, Zolitschka B (2013) Mechanisms of lake-level change at Laguna Potrok Aike (Argentina)—insights from hydrological balance calculations. Quat Sci Rev 71:27–45. https://doi.org/10.1016/j.quascirev.2012.10.040

    Article  Google Scholar 

  • Olsthoorn TN (1985) The power of the electronic worksheet: modeling without special programs. Groundwater 23:381–390

    Article  Google Scholar 

  • Ousey JR (1986) Modeling steady-state groundwater flow using microcomputer spreadsheets. J Geol Educ 35:305–311

    Article  Google Scholar 

  • Sheets RA, Hill MC, Haitjema HM, Provost AM, Masterson JP (2015) Simulation of water-table aquifers using specified saturated thickness. Groundwater 53:151–157

    Article  Google Scholar 

  • Smerdon BD, Mendoza CA, Devito KJ (2007) Simulations of fully coupled lake-groundwater exchange in a subhumid climate with an integrated hydrologic model. Water Resour Res 43:1–13. https://doi.org/10.1029/2006WR005137

    Article  Google Scholar 

  • Stets EG, Winter TC, Rosenberry DO, Striegl RG (2010) Quantification of surface water and groundwater flows to open- and closed-basin lakes in a headwaters watershed using a descriptive oxygen stable isotope model. Water Resour Res 46:W03515. https://doi.org/10.1029/2009WR007793

    Article  Google Scholar 

  • Wang HF, Anderson MP (1982) Introduction to groundwater modeling : finite difference and finite element methods. Academic Press, San Francisco

    Google Scholar 

  • Winston RB (2009) ModelMuse: a graphical user interface for MODFLOW-2005 and PHAST. US Geological Survey, Reston

    Google Scholar 

  • Winter TC (1976) Numerical simulation analysis of the interaction of lakes and ground water. USGS Professional Paper 1001

Download references

Acknowledgements

The authors would like to thank Deborah Haynes and Karen Anderson for their comments on an earlier version of this manuscript. Martin Ankor received financial support via an Australian Government Research Training Program (RTP) scholarship and an Australian Institute of Nuclear Science and Engineering (AINSE) postgraduate scholarship (Award – PGRA). All data and model files generated for this project are available as supplementary information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J. Ankor.

Electronic supplementary material

ESM 1

(PDF 76 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ankor, M.J., Tyler, J.J. Development of a spreadsheet-based model for transient groundwater modelling. Hydrogeol J 27, 1865–1878 (2019). https://doi.org/10.1007/s10040-019-01996-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-019-01996-z

Keywords

Navigation