Abstract
The spatial and temporal distribution of redox zones in an aquifer is important when designing groundwater supply systems. Redox zonation can have direct or indirect control of the biological and chemical reactions and mobility of pollutants. In this study, redox conditions are characterized by interpreting the hydrogeological conditions and water chemistry in groundwater during bank infiltration at a site in Shenyang, northeast China. The relevant redox processes and zonal differences in a shallow flow path and deeper flow path at the field scale were revealed by monitoring the redox parameters and chemistry of groundwater near the Liao River. The results show obvious horizontal and vertical components of redox zones during bank filtration. Variations in the horizontal extent of the redox zone were controlled by the different permeabilities of the riverbed sediments and aquifer with depth. Horizontally, the redox zone was situated within 17 m of the riverbank for the shallow flow path and within 200 m for the deep flow path. The vertical extent of the redox zone was affected by precipitation and seasonal river floods and extended to 10 m below the surface. During bank filtration, iron and manganese oxides or hydroxides were reductively dissolved, and arsenic that was adsorbed onto the medium surface or coprecipitated is released into the groundwater. This leads to increased arsenic content in groundwater, which poses a serious threat to water supply security.
Résumé
La distribution spatiale et temporelle des zones d’oxydoréduction (redox) dans un aquifère est. importante lors de la conception de systèmes d’alimentation en eau souterraine. La zonation redox peut contrôler directement ou indirectement les réactions biologiques et chimiques et la mobilité des contaminants. Dans cette étude, les conditions redox sont caractérisées par l’interprétation des conditions hydrogéologiques et la chimie de l’eau des eaux souterraines au cours de l’infiltration par berge sur le site de Shenyang, Nord Est de la Chine. Les processus redox concernés et les différences zonales dans une voie d’écoulement peu profond et une plus profonde à l’échelle du site ont été mis en évidence grâce au suivi des paramètres redox et la chimie des eaux souterraines près de la rivière Liao. Les résultats montrent d’évidentes composantes horizontales et verticales des zones d’oxydoréduction au cours de la filtration sur berge. Les variations horizontales de la zone d’oxydoréduction sont contrôlées par les différentes conductivités hydrauliques des sédiments du lit de la rivière et de l’aquifère en profondeur. Dans un plan horizontal, la zone redox se trouvait à moins de 17 m de la berge pour la voie d’écoulement peu profonde et à moins de 200 m pour la voie d’écoulement profonde. Dans le plan vertical, la zone redox est. influencée par les précipitations et les inondations saisonnières de la rivière et s’étend à 10 m sous la surface. Au cours de l’infiltration par berge, les oxydes ou hydroxydes de fer et de manganèse sont dissous par réduction, et l’arsenic qui a été adsorbé à la surface du milieu ou coprécipité est. relargué dans les eaux souterraines. Cela conduit à une augmentation de la teneur en arsenic dans les eaux souterraines, ce qui constitue une sérieuse menace pour la sécurité de l’approvisionnement en eau potable.
Resumen
La distribución espacial y temporal de las zonas redox en un acuífero es importante cuando se diseñan sistemas de suministro de agua subterránea. La zonación redox puede tener un control directo o indirecto de las reacciones biológicas y químicas y la movilidad de los contaminantes. En este estudio, las condiciones redox se caracterizan por interpretar las condiciones hidrogeológicas y la química del agua en las aguas subterráneas durante la infiltración del banco en un sitio en Shenyang, al noreste de China. Los procesos redox relevantes y las diferencias zonales en una trayectoria de flujo poco profundo y una trayectoria de flujo más profundo en la escala de campo se revelaron mediante el monitoreo de los parámetros redox y la química del agua subterránea cerca del río Liao. Los resultados muestran componentes horizontales y verticales obvios de las zonas redox durante la filtración de banco. Las variaciones en la extensión horizontal de la zona redox fueron controladas por las diferentes permeabilidades de los sedimentos del lecho del río y del acuífero según la profundidad. Horizontalmente, la zona redox estaba situada a 17 m de la margen del río para la trayectoria de flujo superficial y dentro de los 200 m para la trayectoria de flujo profundo. La extensión vertical de la zona redox se vio afectada por la precipitación y las inundaciones estacionales del río y se extendió a 10 m por debajo de la superficie. Durante la filtración de banco, los óxidos o hidróxidos de hierro y manganeso se disolvieron en forma reductiva, y el arsénico que se adsorbió sobre la superficie del medio o se coprecipitó se libera al agua subterránea. Esto conduce a un mayor contenido de arsénico en las aguas subterráneas, lo que representa una grave amenaza para la seguridad del suministro de agua.
摘要
当设计地下水供水系统时,含水层中氧化还原反应带的空间和时间分布非常重要。氧化还原反应成带现象可直接或间接控制生物和化学反应以及污染物的迁移。在本研究中,通过解译中国东北沈阳某地河岸入渗期间地下水中的水文地质条件和水化学过程,描述了氧化还原反应的特征。通过监测辽河附近地下水中氧化还原反应的参数及化学过程揭示了野外尺度的浅层水流通道及深部水流通道相关的氧化还原反应过程和分区差异。结果显示出,河岸入渗期间有明显的水平和垂直痕迹。氧化还原反应带的水平范围上的变化随深度变化受到河床沉积层和含水层不同渗透率的控制。水平上,对于浅层水流通道,氧化还原反应带位于河岸17 米之内,而对于深层水流通道,则其位于河岸200米以内。氧化环氧反应带垂直范围受到降水和季节性河流洪水的影响,可延伸到地表以下10米。在河岸入渗期间,铁锰氧化物和或氢氧化物还原溶解,吸附在介质表面或者沉淀的砷释放到地下水中。这导致地下水中的砷含量升高,对供水安全产生严重的威胁。
Resumo
A distribuição especial e temporal das zonas redox em um aquífero é importante quando se projetam os sistemas de abastecimento por águas subterrâneas. Zonas redox podem controlar direta ou indiretamente as reações químicas e biológicas e a mobilidade dos poluentes. Neste estudo, as condições redox são caracterizadas pela interpretação das condições hidrogeológicas e químicas das águas subterrâneas durante a infiltração pelas margens em um local da cidade de Shenyang, nordeste da China. Os relevantes processos redox e diferentes zonas no percurso de fluxo, sejam rasos ou profundos, na escala de campo, foram revelados por monitoramento de parâmetros redox e química das águas subterrâneas próximo ao Rio Liao. Os resultados mostram claramente componentes verticais e horizontais das zonas redox ao longo da filtração em margem. Variações na extensão horizontal da zona redox foram controladas por diferentes permeabilidades dos sedimentos do leito do rio e do aquífero em profundidade. Horizontalmente, a zona redox situa-se a 17 m das margens do rio no percurso de fluxo raso e cerca de 200 m no percurso de fluxo profundo. A extensão vertical da zona redox foi afetada pela precipitação e inundações sazonais do rio e alcançou até 10 m abaixo da superfície. Durante a filtração em margem, óxidos e hidróxidos de ferro e manganês foram dissolvidos e reduzidos, e o arsênio, que foi adsorvido pela superfície do meio ou coprecipitado, foi liberado para as águas subterrâneas. Isto levou ao aumento de concentrações de arsênio nas águas subterrâneas, o que representa sério risco a segurança do abastecimento de água.















Similar content being viewed by others
References
Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. Balkema, Leiden, The Netherlands
Bertelkamp C, Verliefde ARD, Schoutteten K, Vanhaecke L, Vanden Bussche J, Singhal N, van der Hoek JP (2016) The effect of redox conditions and adaptation time on organic micropollutant removal during river bank filtration: a laboratory-scale column study. Sci Total Environ 544:309–318. https://doi.org/10.1016/j.scitotenv.2015.11.035
Bourg ACM, Bertin C (1993) Biogeochemical processes during the infiltration of river water into an alluvial aquifer. Environ Sci Technol 27:661–666. https://doi.org/10.1021/es00041a009
Bouwer H (2002) Artificial recharge of groundwater: hydrogeology and engineering. Hydrogeol J 10:121–142. https://doi.org/10.1007/s10040-001-0182-4
Brown CJ, Schoonen MAA, Candela JL (2000) Geochemical modeling of iron, sulfur, oxygen and carbon in a coastal plain aquifer. J Hydrol 237:147–168. https://doi.org/10.1016/S0022-1694(00)00296-1
China GB (2006) National Standard of the People’s Republic of China: standards for drinking water quality (GB5749–2006) (in Chinese). National Health and Family Planning Commission of the People’s Republic of China, Beijing
Cummings DE, Frank Caccavo JR, Fendorf S, Rosenzweig RF (1999) Arsenic mobilization by the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY. Environ Sci Technol 33:723–729. https://doi.org/10.1021/es980541c
Diem S, Cirpka OA, Schirmer M (2013) Modeling the dynamics of oxygen consumption upon riverbank filtration by a stochastic-convective approach. J Hydrol 505:352–363. https://doi.org/10.1016/j.jhydrol.2013.10.015
European Commission (1998) Guidelines of water intended for human consumption. Off J Eur Communities, EC, Brussels
Farnsworth CE, Hering JG (2011) Inorganic geochemistry and redox dynamics in bank filtration settings. Environ Sci Technol 45:5079–5087. https://doi.org/10.1021/es2001612
Gandy CJ, Smith JWN, Jarvis AP (2007) Attenuation of mining-derived pollutants in the hyporheic zone: a review. Sci Total Environ 373:435–446. https://doi.org/10.1016/j.scitotenv.2006.11.004
Greskowiak J, Prommer H, Massmann G, Nützmann G (2006) Modeling seasonal redox dynamics and the corresponding fate of the pharmaceutical residue phenazone during artificial recharge of groundwater. Environ Sci Technol 40:6615–6621. https://doi.org/10.1021/es052506t
Guo H, Liu Z, Ding S, Hao C, Xiu W, Hou W (2015) Arsenate reduction and mobilization in the presence of indigenous aerobic bacteria obtained from high arsenic aquifers of the Hetao basin, Inner Mongolia. Environ Pollut 203:50–59. https://doi.org/10.1016/j.envpol.2015.03.034
Hamann E, Stuyfzand PJ, Greskowiak J, Timmer H, Massmann G (2016) The fate of organic micropollutants during long-term/long-distance river bank filtration. Sci Total Environ 545–546:629–640. https://doi.org/10.1016/j.scitotenv.2015.12.057
Hancock PJ (2002) Human impacts on the stream-groundwater exchange zone. Environ Manag 29(6):763–781. https://doi.org/10.1007/s00267-001-0064-5
Haque S, Johannesson KH (2006) Arsenic concentrations and speciation along a groundwater flow path: the Carrizo Sand Aquifer, Texas, USA. Chem Geol 228:57–71. https://doi.org/10.1016/j.chemgeo.2005.11.019
Heberer T, Massmann G, Fanck B, Taute T, Dünnbier U (2008) Behaviour and redox sensitivity of antimicrobial residues during bank filtration. Chemosphere 73:451–460. https://doi.org/10.1016/j.chemosphere.2008.06.056
Henzler AF, Greskowiak J, Massmann G (2016) Seasonality of temperatures and redox zonations during bank filtration: a modeling approach. J Hydrol 535:282–292. https://doi.org/10.1016/j.jhydrol.2016.01.044
Hiscock KM, Grischek T (2002) Attenuation of groundwater pollution by bank filtration. J Hydrol 266:139–144. https://doi.org/10.1016/S0022-1694(02)00158-0
Hu B, Teng Y, Zhai Y, Zuo R, Li J, Chen H (2016) Riverbank filtration in China: a review and perspective. J Hydrol 541:914–927. https://doi.org/10.1016/j.jhydrol.2016.08.004
Huntscha S, Rodriguez Velosa DM, Schroth MH, Hollender J (2013) Degradation of polar organic micropollutants during riverbank filtration: complementary results from spatiotemporal sampling and push-pull tests. Environ Sci Technol 47:11512–11521. https://doi.org/10.1021/es401802z
Jung HB, Zheng Y, Rahman MW, Rahman MM, Ahmed KM (2015) Redox zonation and oscillation in the hyporheic zone of the Ganges-Brahmaputra-Meghna Delta: implications for the fate of groundwater arsenic during discharge. Appl Geochem 63:647–660. https://doi.org/10.1016/j.apgeochem.2015.09.001
Kedziorek MAM, Bourg ACM (2009) Electron trapping capacity of dissolved oxygen and nitrate to evaluate Mn and Fe reductive dissolution in alluvial aquifers during riverbank filtration. J Hydrol 365:74–78. https://doi.org/10.1016/j.jhydrol.2008.11.020
Kedziorek MAM, Geoffriau S, Bourg ACM (2008) Organic matter and modeling redox reactions during river bank filtration in an alluvial aquifer of the Lot River, France. Environ Sci Technol 42:2793–2798. https://doi.org/10.1021/es702411t
Kocar BD, Borch T, Fendorf S (2010) Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite. Geochim Cosmochim Acta 74:980–994. https://doi.org/10.1016/j.gca.2009.10.023
Lewandowski J, Putschew A, Schwesig D, Neumann C, Radke M (2011) Fate of organic micropollutants in the hyporheic zone of a eutrophic lowland stream: results of a preliminary field study. Sci Total Environ 409:1824–1835. https://doi.org/10.1016/j.scitotenv.2011.01.028
Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54(6):1472–1480. https://doi.org/10.1103/PhysRevLett.50.1998
Massmann G, Pekdeger A, Merz C (2004) Redox processes in the Oderbruch polder groundwater flow system in Germany. Appl Geochem 19:863–886. https://doi.org/10.1016/j.apgeochem.2003.11.006
Massmann G, Greskowiak J, Dünnbier U, Zuehlke S, Knappe A, Pekdeger A (2006) The impact of variable temperatures on the redox conditions and the behaviour of pharmaceutical residues during artificial recharge. J Hydrol 328:141–156. https://doi.org/10.1016/j.jhydrol.2005.12.009
Massmann G, Nogeitzig A, Taute T, Pekdeger A (2008a) Seasonal and spatial distribution of redox zones during lake bank filtration in Berlin, Germany. Environ Geol 54:53–65. https://doi.org/10.1007/s00254-007-0792-9
Massmann G, Dünnbier U, Heberer T, Taute T (2008b) Behaviour and redox sensitivity of pharmaceutical residues during bank filtration: investigation of residues of phenazone-type analgesics. Chemosphere 71:1476–1485. https://doi.org/10.1016/j.chemosphere.2007.12.017
Polomčić D, Hajdin B, Stevanović Z, Bajić D, Hajdin K (2013) Groundwater management by riverbank filtration and an infiltration channel: the case of Obrenovac, Serbia. Hydrogeol J 21:1519–1530. https://doi.org/10.1007/s10040-013-1025-9
Prommer H, Stuyfzand PJ (2005) Identification of temperature-dependent water quality changes during a deep well injection experiment in a pyritic aquifer. Environ Sci Technol 39:2200–2209. https://doi.org/10.1021/es0486768
Saalfield SL, Bostick BC (2009) Changes in iron, sulfur, and arsenic speciation associated with bacterial sulfate reduction in ferrihydrite-rich systems. Environ Sci Technol 43:8787–8793. https://doi.org/10.1021/es901651k
Scow KM, Hicks KA (2005) Natural attenuation and enhanced bioremediation of organic contaminants in groundwater. Curr Opin Biotechnol 16:246–253. https://doi.org/10.1016/j.copbio.2005.03.009
Sharma L, Greskowiak J, Ray C, Eckert P, Prommer H (2012) Elucidating temperature effects on seasonal variations of biogeochemical turnover rates during riverbank filtration. J Hydrol 428-429:104–115. https://doi.org/10.1016/j.jhydrol.2012.01.028
Stuyfzand PJ (2011) Hydrogeochemical processes during riverbank filtration and artificial recharge of polluted surface waters: zonation, identification, and quantification. In: Shamrukh M (ed) Riverbank filtration for water security in desert countries. Springer, Dordrecht, The Netherlands, pp 97–128
Su X, Lu S, Gao R, Su D, Yuan W, Dai Z, Papavasilopoulos EN (2017) Groundwater flow path determination during riverbank filtration affected by groundwater exploitation: a case study of Liao River, Northeast China. Hydrol Sci J 62(14):2331–2347. https://doi.org/10.1080/02626667.2017.1383609
Tadanier CJ, Schreiber ME, Roller JW (2005) Arsenic mobilization through microbially mediated deflocculation of ferrihydrite. Environ Sci Technol 39:3061–3068. https://doi.org/10.1021/es048206d
Tufenkji N, Ryan JN, Elimelech M (2002) Peer reviewed: the promise of bank filtration. Environ Sci Technol 36(21):422A–428A. https://doi.org/10.1021/es022441j
USEPA (2011) 2011 edition of the drinking water standards and health advisories. Office of Water, US Environmental Protection Agency, Washington, DC
von Rohr MR, Hering JG, Kohler H-PE, von Gunten U (2014) Column studies to assess the effects of climate variables on redox processes during riverbank filtration. Water Res 61:263–275. https://doi.org/10.1016/j.watres.2014.05.018
WHO (2011) Guidelines for drinking-water quality, 4th edn. World Health Organization, Geneva
Worch E, Grischek T, Börnick H, Eppinger P (2002) Laboratory tests for simulating attenuation processes of aromatic amines in riverbank filtration. J Hydrol 266:259–268. https://doi.org/10.1016/S0022-1694(02)00169-5
Xie X, Wang Y, Ellis A, Su C, Li J, Li M, Duan M (2013) Delineation of groundwater flow paths using hydrochemical and strontium isotope composition: a case study in high arsenic aquifer systems of the Datong basin, northern China. J Hydrol 476:87–96. https://doi.org/10.1016/j.jhydrol.2012.10.016
Yuan W (2017) Biogeochemical process of Fe and Mn during river bank infiltration affected by groundwater exploiting (in Chinese). PhD Thesis, Jilin University, Changchun, China
Zhang L (2015) Study on pore water hydrogeochemistry evolution of riverbed sedimentation zone under condition of riverbank filtration: an example in Shenyang Huangjia water source (in Chinese). MSc Thesis, Jilin University, Changchun, China
Acknowledgements
The authors would like to thank the editors of Hydrogeology Journal and the reviewers for their thoughtful and constructive comments, which helped improve the manuscript.
Funding
This work was supported by the National Natural Science Foundation of China (Grant numbers: 41372238, 41402209, 41502223, 41602271, and DD20160207).
Author information
Authors and Affiliations
Corresponding author
Additional information
Published in the special issue “Groundwater sustainability in fast-developing China”
Rights and permissions
About this article
Cite this article
Su, X., Lu, S., Yuan, W. et al. Redox zonation for different groundwater flow paths during bank filtration: a case study at Liao River, Shenyang, northeastern China. Hydrogeol J 26, 1573–1589 (2018). https://doi.org/10.1007/s10040-018-1759-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10040-018-1759-5