Abstract
The Ordos Basin is one of the most intensively studied groundwater basins in China. The Ordos Plateau, located in the north part of the Ordos Basin, is ideal to study the pattern of regional groundwater circulation induced by water-table undulations due to the wavy topography and the relatively simple aquifer systems with macroscopically homogeneous sandstone. In catchments located near the first-order divide, the water table is found to be a subdued replica of the topography, and the nonclosed water-table contours in topographic highs of a catchment are indicative of regional groundwater outflow to other catchments. In topographic lows, groundwater-fed lakes/rivers, topography-driven flowing wells, water-loving and/or salt-tolerant vegetation, and soap holes are all indicative of discharge areas. In discharge areas, although groundwater inflow from recharge areas is relatively stable, seasonal variations in groundwater recharge and evapotranspiration lead to significant seasonal fluctuations in the water table, which can be used to estimate groundwater inflow and evapotranspiration rates based on water balance at different stages of water-table change. In the lowest reaches of a complex basin, superposition of local flow systems on regional flow systems has been identified based on groundwater samples collected from wells with different depths and geophysical measurements of apparent resistivity, both of which can be used for characterizing groundwater flow systems. This study enhances understanding of the pattern of regional groundwater circulation in the Ordos Plateau, and also tests the effectiveness of methods for groundwater flow-system characterization.
Résumé
Le Bassin de l’Ordos est. un des bassins aquifères le plus intensément étudiés en Chine. Le Plateau d’Ordos, localisé dans la partie septentrionale du Bassin de l’Ordos, est. idéal pour étudier les modalités de circulation régionale des eaux souterraines induites par les ondulations de la nappe phréatique dues à la topographie ondulée et à la présence de systèmes aquifères relativement simples constitués de grès homogènes à l’échelle macroscopique. Dans les bassins versants situés à proximité de la ligne de partage des eaux de premier ordre, la nappe phréatique est. une réplique de la topographie, et les contours non fermés de la nappe phréatique dans les points hauts topographiques du bassin versant sont des indications d’un transfert régional d’eaux souterraines vers d’autres bassins versants. Dans les zones basses du point de vue topographique, des lacs/rivières alimentés par les eaux souterraines, des puits dont l’écoulement est. conditionné par la topographie, de la végétation hydrophile et/ou tolérante à la salinité, et des orifices à bouillonnement sont tous des indications de l’existence ce zones de décharge. Dans les zones de décharge, bien que les eaux souterraines provenant des zones de recharge soient relativement stables, les variations saisonnières de la recharge des eaux souterraines et de l’évapotranspiration entraînent des fluctuations saisonnières importantes de la nappe phréatique, qui peuvent être utilisées pour estimer l’apport en eaux souterraines et le taux d’évapotranspiration à partir du bilan hydrique pour différents stades de changement de la nappe phréatique. Dans les régions les plus basses d’un bassin complexe, la superposition des systèmes d’écoulement locaux sur les systèmes d’écoulements régionaux a été identifiée à partir d’échantillonnage d’eaux souterraines dans des forages de différentes profondeurs et de mesures géophysiques de la résistivité apparente, toutes deux pouvant être utilisé pour caractériser les systèmes d’écoulement d’eaux souterraines. Cette étude améliore la compréhension des modalités de la circulation régionale des eaux souterraines au sein du Plateau de l’Ordos, et permet de tester également des méthodes efficaces de caractérisation du système d’écoulement des eaux souterraines.
Resumen
La cuenca de Ordos es una de las cuencas de agua subterránea más intensamente estudiadas en China. La meseta de Ordos, ubicada en la parte norte de la cuenca de Ordos, es ideal para estudiar el patrón del flujo regional del agua subterránea inducida por ondulaciones de la capa freática debido a la topografía ondulada y a los sistemas acuíferos de arenisca relativamente simples y macroscópicamente homogéneos. En cuencas situadas cerca de la divisoria de primer orden, el nivel freático es una réplica suave de la topografía, y las líneas de contornos no cerradas de la capa freática en los puntos altos topográficos de una cuenca son indicativos del flujo regional de agua subterránea hacia otras cuencas. En los bajos topográficos, el agua subterránea alimenta a lagos/ríos, la topografía conduce el flujo hacia los pozos, la vegetación es compatible con agua y/o es tolerante a la sal y los pantanos son indicativos de áreas de descarga. En las áreas de descarga, aunque la afluencia de agua subterránea de las áreas de recarga son relativamente estables, las variaciones estacionales en la recarga de agua subterránea y la evapotranspiración producen fluctuaciones estacionales significativas en el nivel freático, que pueden utilizarse para estimar el flujo de agua subterránea y las tasas de evapotranspiración basado en el balance hídrico en las diferentes etapas de cambios en la capa freática. En los tramos más bajos de una cuenca compleja, se ha identificado la superposición de sistemas de flujo local con sistemas de flujo regional basados en muestras de aguas subterráneas de pozos con diferentes profundidades y mediciones geofísicas de resistividad aparente, que pueden utilizarse para caracterizar sistemas de flujo de agua subterránea. Este estudio mejora la comprensión del patrón de flujo regional del agua subterránea en la meseta de Ordos y también prueba métodos efectivos para la caracterización del sistema de flujo de agua subterránea.
摘要
鄂尔多斯盆地是中国地下水研究较为深入的地区之一。鄂尔多斯高原位于鄂尔多斯盆地北部,具有波状起伏的地形和宏观上均质的砂岩组成的含水层系统,是研究由潜水面起伏控制的区域地下水循环的理想区域。在区域性分水岭附近的小流域,潜水面形态与地表起伏相似,位于地形高处、在小流域内部不闭合的潜水高程等值线指示了地下水的跨流域流动现象。在地形低洼处,地下水维系的湖泊、河流,地形控制的自流井,喜水、耐盐植被,以及肥皂洞等现象均指示了地下水的排泄。在排泄区,虽然补给区流入的水量相对稳定,但地下水补给量和蒸散发量的季节性变化仍导致潜水面具有显著的季节性波动。基于潜水面在不同变化阶段的水均衡状况,可估算出蒸散发量和补给区流入量。在复杂盆地地势最低的流域,通过采集不同深度水井的水样,以及地球物理视电阻率测量,可以识别出局部流动系统和区域流动系统的重叠,因此这两种方法均可用于地下水流系统的刻画。本研究增强了对鄂尔多斯高原区域地下水循环模式的理解,同时表明了地下水流动系统多种刻画方法的有效性。
Resumo
A Bacia de Ordos é uma das bacias de águas subterrâneas mais estudadas da China. O Planalto de Ordos, localizado na parte norte da Bacia de Ordos, é ideal para se estudar o padrão de circulação regional das águas subterrâneas induzido pelas ondulações do lençol freático atribuídas a uma topografia ondulada e a um sistema aquífero relativamente simples com arenitos macroscópicos homogêneos. Nas bacias hidrográficas localizadas perto de divisores de primeira ordem, o lençol freático é considerado uma réplica moderada da topografia, e os contornos não fechados do lençol freático em altos topográficos da bacia são indicativos da saída regional de águas subterrâneas para outras bacias hidrográficas. Em baixos topográficos, lagos/rios alimentados por águas subterrâneas, fontes surgentes derivadas da topografia, vegetação que absorve água e/ou tolerante a salinidade, e buracos de sabão (soap holes) são todos indicativos de áreas de descarga. Nas áreas de descarga, embora o fluxo das águas subterrâneas das áreas de recarga seja relativamente estável, as variações sazonais na recarga das águas subterrâneas e evapotranspiração levam a flutuações sazonais significativas no lençol freático, que podem ser usadas para estimar as taxas de entrada de águas subterrâneas e evapotranspiração com base no balanço hídrico em diferentes estágios de mudança do lençol freático. Nas extensões mais baixas de uma bacia complexa, a superposição de sistemas de fluxo local em sistemas de fluxo regional foi identificada com base em amostras de águas subterrâneas coletadas de poços com profundidades diferentes e medidas geofísicas de resistividade aparente, que podem ser usadas para caracterizar os sistemas de fluxo de águas subterrâneas. Este estudo melhora a compreensão do padrão de circulação regional das águas subterrâneas no Planalto de Ordos e também testa métodos eficazes para a caracterização do sistema de fluxo de águas subterrâneas.












Similar content being viewed by others
References
Alley WM, Healy RW, LaBaugh JW, Reily TE (2002) Flow and storage in groundwater systems. Science 296:1985–1990. https://doi.org/10.1126/science.1067123
Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Pet Trans AIME 146:54–62
Batelaan O, De Smedt F, Triest L (2003) Regional groundwater discharge: phreatophyte mapping, groundwater modelling and impact analysis of land-use change. J Hydrol 275:86–108. https://doi.org/10.1016/S0022-1694(03)00018-0
Butler JJ, Kluitenberg GJ, Whittemore DO, Loheide SP, Jin W, Billinger MA, Zhan X (2007) A field investigation of phreatophyte-induced fluctuations in the water table. Water Resour Res 43:W02404. https://doi.org/10.1029/2005WR004627
Cheng DH, Wang WK, Chen XH, Hou GC, Yang HB, Li Y (2011) A model for evaluating the influence of water and salt on vegetation in a semi-arid desert region, northern China. Environ Earth Sci 64(2):337–346. https://doi.org/10.1007/s12665-010-0854-2
Cheng DH, Li Y, Chen X, Wang WK, Hou GC, Wang CL (2013) Estimation of groundwater evaportranspiration using diurnal water table fluctuations in the Mu Us Desert, northern China. J Hydrol 490:106–113. https://doi.org/10.1016/j.jhydrol.2013.03.027
Deming D (2002) Introduction to hydrogeology. McGraw-Hill, New York
Duan L, Wang W, Zhou L, Chen Z (2016) The formation of shallow fresh groundwater in the north of Yanchi county, Ningxia, China: main influencing factors and mechanism. Environ Earth Sci 75(6):461. https://doi.org/10.1007/s12665-016-5333-y
Engelen GB, Kloosterman FH (1996) Hydrological systems analysis: methods and applications. Kluwer, Dordrecht, The Netherlands
Fan Y (2015) Groundwater in the Earth’s critical zone: relevance to large-scale patterns and processes. Water Resour Res 51:3052–3069. https://doi.org/10.1002/2015WR017037
Fan Y, Li H, Miguez-Macho G (2013) Global patterns of groundwater table depth. Science 339:940–943. https://doi.org/10.1126/science.1229881
Fetter CW (2001) Applied hydrogeology, 4th edn. Prentice-Hall, Englewood Cliffs, NJ
Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJ
Freeze RA, Witherspoon PA (1967) Theoretical analysis of regional groundwater flow: 2. effect of water-table configuration and subsurface permeability variations. Water Resour Res 3:623–634. https://doi.org/10.1029/WR003i002p00623
Garven G (1995) Continental-scale groundwater-flow and geologic processes. Annu Rev Earth Planet Sci 23:89–117. https://doi.org/10.1146/annurev.ea.23.050195.000513
Gleeson T, Marklund L, Smith L, Manning AH (2011) Classifying the water table at regional to continental scales. Geophys Res Lett 38:L05401. https://doi.org/10.1029/2010gl046427
Gribovszki Z, Szilágyi J, Kalicz P (2010) Diurnal fluctuations in shallow groundwater levels and streamflow rates and their interpretation: a review. J Hydrol 385:371–383. https://doi.org/10.1016/j.jhydrol.2010.02.001
Haitjema HM, Mitchell-Bruker S (2005) Are water tables a subdued replica of the topography? Ground Water 43:781–786. https://doi.org/10.1111/j.1745-6584.2005.00090.x
Healy RW, Scanlon BR (2010) Estimating groundwater recharge. Cambridge University Press, Cambridge
Hou GC, Zhang MS, Liu F, Wang YH, Liang YP, Tao ZP (2008a) Groundwater investigation in the Ordos Basin (in Chinese). Geological Publishing House, Beijing
Hou GC, Liang YP, Su XS, Zhao ZH, Tao ZP, Yin LH, Yang YC, Wang XY (2008b) Groundwater systems and resources in the Ordos Basin, China. Acta Geol Sin-Engl Ed 82:1061–1069. https://doi.org/10.1111/j.1755-6724.2008.tb00664.x
Jiang XW, Wang XS, Wan L, Ge S (2011) An analytical study on stagnant points in nested flow systems in basins with depth-decaying hydraulic conductivity. Water Resour Res 47:W01512. https://doi.org/10.1029/2010WR009346
Jiang XW, Wan L, Ge S, Cao GL, Hou GC, Hu FS, Wang XS, Li H, Liang SH (2012) A quantitative study on accumulation of age mass around stagnation points in nested flow systems. Water Resour Res 48(12):W12502. https://doi.org/10.1029/2012wr012509
Jiang XW, Wan L, Wang JZ, Yin BX, Fu WX, Lin CH (2014) Field identification of groundwater flow systems and hydraulic traps in drainage basins using a geophysical method. Geophys Res Lett 41:2812–2819. https://doi.org/10.1002/2014GL059579
Jiang XW, Sun ZC, Zhao KY, Shi FS, Wan L, Wang XS, Shi ZM (2017) A method for simultaneous estimation of groundwater evapotranspiration and inflow rates in the discharge area using seasonal water table fluctuations. J Hydrol 548:498–507. https://doi.org/10.1016/j.jhydrol.2017.03.026
Lazer GD (2006) Evidence for deep groundwater flow and convective heat transport in mountainous terrain, Delta County, Colorado, USA. Hydrogeol J 14:1582–1598
Loheide SP, Butler JJ, Gorelick SM (2005) Estimation of groundwater consumption by phreatophytes using diurnal water table fluctuations: a saturated–unsaturated flow assessment. Water Resour Res 41:W07030. https://doi.org/10.1029/2005WR003942
Shang H, Wang W, Dai Z, Duan L, Zhao Y, Zhang J (2016) An ecology-oriented exploitation mode of groundwater resources in the northern Tianshan Mountains, China. J Hydrol 543:386–394. https://doi.org/10.1016/j.jhydrol.2016.10.012
Tóth J (1962) A theory of groundwater motion in small basins in central Alberta, Canada. J Geophys Res 67:4375–4387. https://doi.org/10.1029/JZ067i011p04375
Tóth J (1963) A theoretical analysis of groundwater flow in small drainage basins. J Geophys Res 68:4795–4812. https://doi.org/10.1029/JZ068i008p02354
Tóth J (1966) Mapping and interpretation of field phenomena for groundwater reconnaissance in a prairie environment, Alberta, Canada. Bull Int Assoc Sci Hydrol 9:20–68
Tóth Á, Havril T, Simon S, Galsa A, Monteiro Santos FA, Müller I, Mádl-Szőnyi J (2016) Groundwater flow pattern and related environmental phenomena in complex geologic setting based on integrated model construction. J Hydrol 539:330–344. https://doi.org/10.1016/j.jhydrol.2016.05.038
Wang H, Jiang XW, Wan L, Han G, Guo H (2015a) Hydrogeochemical characterization of groundwater flow systems in the discharge area of a river basin. J Hydrol 527:433–441. https://doi.org/10.1016/j.jhydrol.2015.04.063
Wang JZ, Jiang XW, Wan L, Wörman A, Wang H, Wang XS, Li H (2015b) An analytical study on artesian flow conditions in unconfined-aquifer drainage basins. Water Resour Res 51:8658–8667. https://doi.org/10.1002/2015WR017104
Wang JZ, Wörman A, Bresciani E, Wan L, Wang XS, Jiang XW (2016) On the use of late-time peaks of residence time distributions for the characterization of hierarchically nested groundwater flow systems. J Hydrol 543(Part A):47–58. https://doi.org/10.1016/j.jhydrol.2016.04.034
Wang W, Yang Z, Kong J, Cheng D, Duan L (2013) Wang Z (2013) ecological impacts induced by groundwater and their thresholds in the arid areas in Northwest China. Environ Eng Manag J 12(7):1497–1507
White WN (1932) Method of estimating groundwater supplies based on discharge by plants and evaporation from soil – results of investigation in Escalante Valley, Utah. US Geol Surv 1–105
Winter TC (1976) Numerical simulation analysis of the interaction of lakes and ground water. US Geological Survey, Washington, DC, pp 1–45
Winter TC, Harvey JW, Franke OL, Alley WM (1998) Groundwater and surface water: a single resource. US Geological Survey, Denver, CO, pp 1–79
Wörman A, Packman AI, Marklund L, Harvey JW, Stone SH (2006) Exact three-dimensional spectral solution to surface-groundwater interactions with arbitrary surface topography. Geophys Res Lett 33:L07402. https://doi.org/10.1029/2006gl025747
Wörman A, Packman AI, Marklund L, Harvey JW, Stone SH (2007) Fractal topography and subsurface water flows from fluvial bedforms to the continental shield. Geophys Res Lett 34:L07402. https://doi.org/10.1029/2007GL029426
Yin LH, Hou GC, Tao ZP, Li Y (2010) Origin and recharge estimates of groundwater in the Ordos Plateau, People’s Republic of China. Environ Earth Sci 60:1731–1738. https://doi.org/10.1007/s12665-009-0310-3
Yin LH, Hou GC, Su XS, Wang D, Dong JQ, Hao YH, Wang XY (2011) Isotopes (δD and δ18O) in precipitation, groundwater and surface water in the Ordos Plateau, China: implications with respect to groundwater recharge and circulation. Hydrogeol J 19(2):429–443. https://doi.org/10.1007/s10040-010-0671-4
Zijl W (1999) Scale aspects of groundwater flow and transport systems. Hydrogeol J 7:139–150. https://doi.org/10.1007/s100400050185
Funding
This study is supported by the National Natural Science Foundation of China (41522205), the National Program for Support of Top-notch Young Professionals, the Foundation for the Author of National Excellent Doctoral Dissertation (201457), and the China Geological Survey (1212011121145).
Author information
Authors and Affiliations
Corresponding author
Additional information
Published in the special issue “Groundwater sustainability in fast-developing China”
Rights and permissions
About this article
Cite this article
Jiang, XW., Wan, L., Wang, XS. et al. A multi-method study of regional groundwater circulation in the Ordos Plateau, NW China. Hydrogeol J 26, 1657–1668 (2018). https://doi.org/10.1007/s10040-018-1731-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10040-018-1731-4