Abstract
Hydrogeochemistry and environmental tracers (2H, 18O, 87Sr/86Sr) in precipitation, river and reservoir water, and groundwater have been used to determine groundwater recharge sources, and to identify mixing characteristics and mineralization processes in the Manas River Basin (MRB), which is a typical mountain–oasis–desert ecosystem in arid northwest China. The oasis component is artificial (irrigation). Groundwater with enriched stable isotope content originates from local precipitation and surface-water leakage in the piedmont alluvial–oasis plain. Groundwater with more depleted isotopes in the north oasis plain and desert is recharged by lateral flow from the adjacent mountains, for which recharge is associated with high altitude and/or paleo-water infiltrating during a period of much colder climate. Little evaporation and isotope exchange between groundwater and rock and soil minerals occurred in the mountain, piedmont and oasis plain. Groundwater δ2H and δ18O values show more homogeneous values along the groundwater flow direction and with well depths, indicating inter-aquifer mixing processes. A regional contrast of groundwater allows the 87Sr/86Sr ratios and δ18O values to be useful in a combination with Cl, Na, Mg, Ca and Sr concentrations to distinguish the groundwater mixing characteristics. Two main processes are identified: groundwater lateral-flow mixing and river leakage in the piedmont alluvial–oasis plain, and vertical mixing in the north oasis plain and the desert. The 87Sr/86Sr ratios and selected ion ratios reveal that carbonate dissolution and mixing with silicate from the southern mountain area are primarily controlling the strontium isotope hydrogeochemistry.
Résumé
L’hydrogéochimie et les traceurs environnementaux (2H, 18O, 87Sr/86Sr) dans les précipitations, l’eau des rivières et de réservoirs, et des eaux souterraines ont été utilisés pour déterminer l’origine de la recharge des eaux souterraines, et pour identifier les caractéristiques des mélanges et des processus de minéralisation dans le bassin de la rivière de Manas (MRB), qui est. un écosystème typique désertique et montagneux avec oasis dans le nord-ouest aride de la Chine. La composante oasis est. artificielle (irrigation). Les eaux souterraines avec un contenu enrichi en isotope stable proviennent des précipitations locales et des infiltrations d’eau de surface dans la plaine alluviale et d’oasis de piémont. Les eaux souterraines avec des isotopes plus appauvris dans la plaine d’oasis du nord et du désert sont rechargées par des écoulements latéraux des montagnes adjacentes, pour lesquelles la recharge est. associée à des infiltrations d’haute altitude et/ou d’eaux anciennes d’une période de climat plus froid. La faible évaporation et l’échange isotopique entre les eaux souterraines et les minéraux des roches et des sols prennent place dans la montagne, le piémont et la plaine d’oasis. Les valeurs du δ2H et du δ18O présentent des valeurs plus homogènes en fonction des directions d’écoulement d’eau souterraine et des profondeurs des puits, indiquant des processus de mélanges entre aquifères. A cause de l’existence d’un contraste régionale des eaux souterraines, les rapports de 87Sr/86Sr et les valeurs de δ18O sont utiles en les combinant avec les concentrations de Cl, Na, Mg, Ca et Sr pour distinguer les caractéristiques de mélange des eaux souterraines. Deux processus principaux sont identifiés: le mélange de flux latéral des eaux souterraines dans la plaine alluviale et d’oasis du piémont, et l’infiltration d’eau de rivière et le mélange vertical dans la plaine d’oasis du nord et le désert. Les rapports de 87Sr/86Sr et les rapports d’ions sélectionnés révèlent que la dissolution des carbonates et le mélange avec les silicates à partir de la zone montagneuse du sud contrôlent principalement l’hydrogéochimie des isotopes du strontium.
Resumen
Se han utilizado la hidrogeoquímica y trazadores ambientales (2H, 18O, 87Sr/86Sr) en precipitaciones, aguas de ríos y embalses y aguas subterráneas para determinar las fuentes de recarga del agua subterránea y para identificar las características de la mezcla y los procesos de mineralización en la Cuenca del Río Manas (MRB) Es un típico ecosistema de montaña en un oasis del desierto en el noroeste árido de China. El componente de oasis es artificial (riego). El agua subterránea con contenido de isótopos estables enriquecidos se origina de la precipitación local y de la filtración del agua superficial en la llanura aluvial del piedemonte. El agua subterránea con isótopos más empobrecidos en la llanura y en el oasis de el desierto del norte es recargada por el flujo lateral de las montañas adyacentes, para lo cual la recarga se asocia con la alta altitud y/o el paleo-agua infiltrándose durante un período de clima mucho más frío. La escasa evaporación e intercambio isotópico entre el agua subterránea, la roca y los minerales del suelo ocurrieron en la montaña, en el piedemonte y en el llano del oasis. Los valores de δ2H y δ18O en el agua subterránea son más homogéneos a lo largo de la dirección del flujo de agua subterránea y con las profundidades de los pozos, lo que indica procesos de mezcla entre acuíferos. Un contraste regional del agua subterránea permite que las relaciones 87Sr/86Sr y los valores de δ18O sean útiles en combinación con las concentraciones de Cl, Na, Mg, Ca y Sr para distinguir las características de mezcla del agua subterránea. Se identifican dos procesos principales: mezcla de flujo lateral de agua subterránea en el piedemonte del oasis de la llanura aluvial y la filtración de de ríos y la mezcla vertical en el oasis del desierto de la llanura norte. Las relaciones 87Sr/86Sr y las relaciones de iones seleccionadas revelan que la disolución de carbonatos y la mezcla con silicato del área montañosa del sur controlan principalmente la hidrogeoquímica isotópica del estroncio.
摘要
以中国西北干旱地区的玛纳斯河流域盆地为研究对象,通过系统收集研究区降水、河水、水库水和地下水,利用水文地球化学及环境示踪剂(2H、18O、87Sr/86Sr)揭示了地下水补给来源,识别出地下水的混合特征及矿化过程。文中的绿洲特指人工绿洲(灌溉)。山前冲积-绿洲平原区的地下水氢氧稳定同位素较为富集,为当地降水和地表水的渗漏补给。北部绿洲平原和沙漠区的地下水氢氧稳定同位素贫化,为周边山区侧向径流补给,或者来源于气候更冷时期古大气降水的入渗。山区、山前及绿洲平原区,地下水受蒸发程度较小,地下水与岩土矿物发生同位素交换较弱。地下水的δ2H和δ18O异质性随地下水流向及井深逐渐减小,指示出不同含水层发生了混合。通过综合分析区域尺度地下水中87Sr/86Sr同位素比值、δ18O、Cl、Na、Mg、Ca和Sr含量,识别出两种地下水混合特征:山前冲积-绿洲平原区地下水发生侧向径流混合及河水渗漏补给;北部绿洲平原和沙漠区地下水发生垂向混合。87Sr/86Sr同位素及特定离子比值分析表明,南部山区的碳酸盐溶解及混合了少量硅酸盐溶解,对地下水中的锶同位素及水文地球化学起主要控制作用。
Resumo
A aplicação de hidrogeoquímica e traçadores ambientais (2H, 18O, 87Sr/86Sr) nas águas de precipitação, rios, reservatórios, e águas subterrâneas tem sido utilizada para determinar as recargas das águas subterrâneas, e identificar as características da mistura e processos de mineralização na Bacia do Rio Manas (BRM), que é um típico ecossistema montanha-oásis-deserto no noroeste árido da China. O componente oásis é artificial (irrigação). As águas subterrâneas isotopicamente enriquecidas provém de precipitação local e vazamento de águas superficiais nos oásis das planícies aluviais de piemonte. As águas subterrâneas com mais isótopos depletados na planície norte do oásis e deserto são recarregadas pelo fluxo lateral das montanhas adjacentes, na qual a recarga está associada à infiltração nas altas altitudes e/ou águas antigas durante períodos de clima frio. A baixa evaporação e troca isotópica entre água-rocha e minerais do solo ocorrem nas montanhas, piemonte e planícies do oásis. Valores de δ2H e δ18O das águas subterrâneas mostram-se homogêneos ao longo do fluxo direcional e com a profundidade dos poços, indicando processos de misturas entre aquíferos. Um contraste regional de águas subterrâneas permite que os valores da razão 87Sr/86Sr e δ18O sejam úteis quando combinados com os resultados das concentrações de Cl, Na, Mg, Ca e Sr, para caracterizar e distinguir as misturas das águas subterrâneas. Dois principais processos foram identificados: mistura do fluxo subterrâneo lateral na região das planícies aluviais do oásis do piemonte, e o influência de rios e mistura vertical no norte das planícies do oásis e deserto. As concentrações de 87Sr/86Sr e as razões iônicas mostram que a dissolução dos carbonatos e mistura dos silicatos das áreas montanhosas ao sul controlam, principalmente, a hidrogeoquímica isotópica do estrôncio.











Similar content being viewed by others
References
Allison GB, Barnes CJ (1983) Estimation of evaporation from non-vegetated surfaces using natural deuterium. Nature 301:143–145. https://doi.org/10.1038/301143a0
Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. Balkema, Dordrecht, The Netherlands
Araguás-Araguás L, Froehlich K (1998) Stable isotope composition of precipitation over Southeast Asia. J Geophys Res 103(D22):28721–28742
Banner JL, Kaufman J (1994) The isotopic record of ocean chemistry and diagenesis preserved in non-luminescent brachiopods from Mississippian carbonate rocks, Illinois and Missouri. Geol Soc Am Bull 106:1074–1082. https://doi.org/10.1130/0016-7606(1994)106<1074:TIROOC>2.3.CO;2
Barbieri M, Boschetti T, Petitta M, Tallini M (2005) Stable isotope (2H, 18O and 87Sr/86Sr) and hydrochemistry monitoring for groundwater hydrodynamics analysis in a karst aquifer (Gran Sasso, central Italy). Appl Geochem 20:2063–2081. https://doi.org/10.1016/j.apgeochem.2005.07.008
Binet S, Joigneaux E, Pauwels H, Albéric P, Fléhoc C, Bruand A (2017) Water exchange, mixing and transient storage between a saturated karstic conduit and the surrounding aquifer: groundwater flow modeling and inputs from stable water isotopes. J Hydrol 544:278–289. https://doi.org/10.1016/j.jhydrol.2016.11.042
Carol E, Kruse E, Mas-Pla J (2009) Hydrochemical and isotopical evidence of ground water salinization processes on the coastal plain of Samborombón Bay, Argentina. J Hydrol 365:335–345. https://doi.org/10.1016/j.jhydrol.2008.11.041
Cartwright I, Morgenstern U (2012) Constraining groundwater recharge and the rate of geochemical processes using tritium and major ion geochemistry: Ovens Catchment, southeast Australia. J Hydrol 475:137–149. https://doi.org/10.1016/j.jhydrol.2012.09.037
Cartwright I, Weaver TR (2005) Hydrogeochemistry of the Goulburn Valley region of the Murray Basin, Australia: implications for flow paths and resource vulnerability. Hydrogeol J 13:752–770. https://doi.org/10.1007/s10040-003-0318-9
Cartwright I, Weaver TR, Petrides B (2007) Controls on 87Sr/86Sr ratios of groundwater in silicate-dominated aquifers: SE Murray Basin, Australia. Chem Geol 246:107–123. https://doi.org/10.1016/j.chemgeo.2007.09.006
Cheng WM, Zhou CH, Liu HJ, Zhang Y, Jiang Y, Zhang YC, Yao YH (2006) The oasis expansion and eco-environment change over the last 50 years in Manas River Valley, Xinjinag. Sci China: Series D Earth Sci 49(2):163–175. https://doi.org/10.1007/s11430-004-5348-1
Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, Boca Raton, FL
Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703
Cui WG, Mu GJ, Xia B, Ma NN (2006) Evolution of alluvial fans at range-front of Tian Mountains in Manas River valley based on remote sensing technology (in Chinese). Geog Geo-Inform Sci 22(3):39–42
Edmunds WM, Ma JZ, Aeschbach-Hertig W, Kipfer R, Darbyshire DPF (2006) Groundwater recharge history and hydrogeochemical evolution in the Minqin Basin, North West China. Appl Geochem 21:2148–2170. https://doi.org/10.1016/j.apgeochem.2006.07.016
Farid I, Zouari K, Rigane A, Beji R (2015) Origin of the groundwater salinity and geochemical processes in detrital and carbonate aquifers: case of Chougafiya basin (central Tunisia). J Hydrol 530:508–532. https://doi.org/10.1016/j.jhydrol.2015.10.009
Faure G (1991) Principles and applications of inorganic geochemistry. Prentice-Hall, Englewood Cliffs, NJ, 626 pp
Feth JH, Gibbs RJ (1971) Mechanisms controlling world water chemistry: evaporation-crystallization process. Science 172(3985):870–872
Franklyn MT, McNutt RH, Kamineni DC, Gascoyne M, Frape SK (1991) Groundwater 87Sr/86Sr values in the Eye-Dashwa Lakes pluton, Canada: evidence for plagioclase-water reaction. Chem Geol 86(2):111–122
Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170(3962):1088–1090
Goller R, Wilcke W, Leng MJ, Tobschall HJ, Wagner K, Valarezo C, Zech W (2005) Tracing water paths through small catchments under a tropical montane rain forest in south Ecuador by an oxygen isotope approach. J Hydrol 308:67–80. https://doi.org/10.1016/j.jhydrol.2004.10.022
Gong B, Zheng YF, Chen RX (2007) TC/EA-MS online determination of hydrogen isotope composition and water concentration in eclogitic garnet. Phys Chem Miner 34:687–698. https://doi.org/10.1007/s00269-007-0184-4
Han GL, Liu CQ (2004) Water geochemistry controlled by carbonate dissolution: a study of the river waters draining karst-dominated terrain, Guizhou Province, China. Chem Geol 204:1–21
Han DM, Song XF, Currell MJ, Cao GL, Zhang YH, Kang YH (2011) A survey of groundwater levels and hydrogeochemistry in irrigated fields in the Karamay agricultural development area, Northwest China: implications for soil and groundwater salinity resulting from surface water transfer for irrigation. J Hydrol 405:217–234. https://doi.org/10.1016/j.jhydrol.2011.03.052
IAEA (2006) Isotope hydrology information system, the ISOHIS database. http://isohis.iaea.org/water. Accessed 27 January 2016
Jelinowska A, Tucholka P, Gasse F, Fontes JC (1995) Mineral magnetic record of environment in late Pleistocene and Holocene sediments, Lake Manas, Xinjiang, China. Geophys Res Lett 22(8):953–956
Kong YL, Pang ZH (2016) A positive altitude gradient of isotopes in the precipitation over the Tianshan Mountains: effects of moisture recycling and sub-cloud evaporation. J Hydrol 542:222–230. https://doi.org/10.1016/j.jhydrol.2016.09.007
Lasaga AC (1984) Chemical kinetics of water–rock interactions. J Geophys Res 89(B6):4009–4025
Ling HB, Xu HL, Qiao M, Fan ZL, Shi W, Zhang QQ (2010) Temporal-spatial evolution of stream construction and its driving forces in Manas River basin during 1958–2006 (in Chinese). Prog Geogr 29(9):1129–1136
Ling HB, Xu HL, Fu JY, Liu XH (2012) Surface runoff processes and sustainable utilization of water resources in Manas River basin, Xinjiang, China. J Arid Land 4(3):271–280. https://doi.org/10.3724/SP.J.1227.2012.00271
Ling HB, Xu HL, Fu JY, Fan ZL, Xu XW (2013) Suitable oasis scale in a typical continental river basin in an arid region of China: a case study of the Manas River basin. Quatern Int 286:116–125. https://doi.org/10.1016/j.quaint.2012.07.027
Liu JR, Song XF, Yuan GF, Sun XM, Liu X, Wang SQ (2010a) Characteristics of δ18O in precipitation over eastern monsoon China and the water vapor sources. Chinese Sci Bull 55(2):200–211. https://doi.org/10.1007/s11434-009-0202-7
Liu ZM, Wang GL, Liu SY, Chen DH, Wang XY (2010b) Analysis on hydrochemistry and isotopic compositions of groundwater in the plain of Manas River basin (in Chinese). Editorial Office Site Invest Sci Technol 164(2):18–23
Lu HZ, Wang ZG, Li YS (1997) Magma-fluid transition and the genesis of Pegmatite Dike No. 3, Altay, Xinjiang, Northwest China. Chin J Geochem 16(1):43–52
Ma JZ, Ding ZY, Edmunds WM, Gates JB, Huang TM (2009) Limits to recharge of groundwater from Tibetan Plateau to the Gobi Desert, implications for water management in the mountain front. J Hydrol 364:128–141. https://doi.org/10.1016/j.jhydrol.2008.10.010
Ma JZ, He JH, Qi S, Zhu GF, Zhao W, Edmunds WM, Zhao YP (2013) Groundwater recharge and evolution in the Dunhuang Basin, northwestern China. Appl Geochem 28:19–31. https://doi.org/10.1016/j.apgeochem.2012.10.007
Ma B, Liang X, Liu SH, Jin MG, Nimmo JR, Li J (2017) Evaluation of diffuse and preferential flow pathways of infiltrated precipitation and irrigation using oxygen and hydrogen isotopes. Hydrogeol J 25:675–688. https://doi.org/10.1007/s10040-016-1525-5
Moya CE, Raiber M, Taulis M, Cox ME (2016) Using environmental isotopes and dissolved methane concentrations to constrain hydrochemical processes and inter-aquifer mixing in the Galilee and Eromanga basins, Great Artesian Basin, Australia. J Hydrol 539:304–318. https://doi.org/10.1016/j.jhydrol.2016.05.016
Négrel P, Casanova J, Aranyossy JF (2001) Strontium isotope systematics used to decipher the origin of groundwaters sampled from granitoids: the Vienne case (France). Chem Geol 177:287–308
Négrel P, Pauwels H, Dewandel B, Gandolfi JM, Mascré C, Ahmed S (2011) Understanding groundwater systems and their functioning through the study of stable water isotopes in a hard-rock aquifer (Maheshwaram watershed, India). J Hydrol 397:55–70. https://doi.org/10.1016/j.jhydrol.2010.11.033
Négrel P, Petelet-Giraud E, Millot R (2016) Tracing water cycle in regulated basin using stable δ18O–δ2H isotopes: the Ebro River basin (Spain). Chem Geol 422:71–81. https://doi.org/10.1016/j.chemgeo.2015.12.009
Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (Version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geol Surv Water Resour Invest Rep 99-4259
Petelet-Giraud E, Klaver G, Négrel P (2009) Natural versus anthropogenic sources in the surface-and groundwater dissolved load of the Dommel River (Meuse basin): constraints by boron and strontium isotopes and gadolinium anomaly. J Hydrol 369:336–349. https://doi.org/10.1016/j.jhydrol.2009.02.029
Santoni S, Huneau F, Garel E, Aquilina L, Vergnaud-Ayraud V, Labasque T, Celle-Jeanton H (2016) Strontium isotopes as tracers of water–rocks interactions, mixing processes and residence time indicator of groundwater within the granite-carbonate coastal aquifer of Bonifacio (Corsica, France). Sci Total Environ 573:233–246. https://doi.org/10.1016/j.scitotenv.2016.08.087
Schoeller H (1965) Qualitative evaluation of groundwater resources. In: H Schoeller (ed) Methods and techniques of groundwater investigations and development. UNESCO, Paris, pp 54–83
Shand P, Darbyshire DPF, Love AJ, Edmunds WM (2009) Sr isotopes in natural waters: applications to source characterization and water–rock interaction in contrasting landscapes. Appl Geochem 24:574–586. https://doi.org/10.1016/j.apgeochem.2008.12.011
Shi XM, Yang JC, Li YL, Nan F (2004) The relation between groundwater and landform in the Manasi River Valley (in Chinese). Geogr Geo-Inform Sci 20(3):56–60
Skrzypek G, Dogramaci S, Grierson PF (2013) Geochemical and hydrological processes controlling groundwater salinity of a large inland wetland of northwest Australia. Chem Geol 357:164–177. https://doi.org/10.1016/j.chemgeo.2013.08.035
Stallard RF, Edmond JM (1987) Geochemistry of the Amazon: 3. weathering chemistry and limits to dissolved inputs. J Geophys Res 92:8293–8302
Sun ZY, Ma R, Wang YX, Ma T, Liu YD (2016) Using isotopic, hydrogeochemical-tracer and temperature data to characterize recharge and flow paths in a complex karst groundwater flow system in northern China. Hydrogeol J 24:1393–1412. https://doi.org/10.1007/s10040-016-1390-2
Tian H, Wang WK, Jing XY, Deng L (2010) A study on tritium of groundwater in the Manas River basin (in Chinese). J Arid Land Resour Environ 24(3):98–10
Uliana MM, Sharp JM (2001) Tracing regional flow paths to major springs in Trans-Pecos Texas using geochemical data and geochemical models. Chem Geol 179:53–72
Uliana MM, Banner JL, Sharp JM (2007) Regional groundwater flow paths in Trans-Pecos, Texas inferred from oxygen, hydrogen, and strontium isotopes. J Hydrol 334:334–346. https://doi.org/10.1016/j.jhydrol.2006.10.015
Wang J (2007) Study on water environmental isotopes in northern piedmont of Tianshan Mountain (in Chinese). MSc Thesis, Chang’an University, China
Wang YX, Guo QH, Su CL, Ma T (2006) Strontium isotope characterization and major ion geochemistry of karst water flow, Shentou, northern China. J Hydrol 328:592–603. https://doi.org/10.1016/j.jhydrol.2006.01.006
Wang P, Yu JJ, Zhang YC, Liu CM (2013) Groundwater recharge and hydrogeochemical evolution in the Ejina Basin, Northwest China. J Hydrol 476:72–86. https://doi.org/10.1016/j.jhydrol.2012.10.049
Wu B (2007) Study on groundwater system evolvement law and water environment effect of Shihezi City (in Chinese). PhD Thesis, Xinjiang Agricultural University, China
Wu C, Chen HY, Hollings P, Xu DR, Liang P, Han JS, Xiao B, Cai KD, Liu ZJ, Qi YK (2015) Magmatic sequences in the Halasu Cu Belt, NW China: trigger for the Paleozoic porphyry Cu mineralization in the Chinese Altay-East Junggar. Ore Geol Rev 71:373–404. https://doi.org/10.1016/j.oregeorev.2015.06.017
Xie XJ, Wang YX, Su CL, Li JX, Li MD (2012) Influence of irrigation practices on arsenic mobilization: evidence from isotope composition and Cl/Br ratios in groundwater from Datong Basin, northern China. J Hydrol 424-425:37–47. https://doi.org/10.1016/j.jhydrol.2011.12.017
Xie XJ, Wang YX, Ellis A, Su CL, Li JX, Li MD, Duan MY (2013) Delineation of groundwater flow paths using hydrochemical and strontium isotope composition: a case study in high arsenic aquifer systems of the Datong basin, northern China. J Hydrol 476:87–96
Zhao BF (2010) Recharge on water resources characteristics and its rational development pattern for arid areas: a case of Manas River Basin (in Chinese). PhD Thesis, Chang’an University, China
Acknowledgements
This research was fund by the National Natural Science Foundation of China (U1403282). The authors would like to thank Dr. Xumei Mao, Dr. Zhenli Zhu, Mr. Yalei Liu and Mr. Jianjun Wang for their sampling and laboratory works. We also wish to thank the editor and reviewers for their constructive and insightful comments on the manuscript.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ma, B., Jin, M., Liang, X. et al. Groundwater mixing and mineralization processes in a mountain–oasis–desert basin, northwest China: hydrogeochemistry and environmental tracer indicators. Hydrogeol J 26, 233–250 (2018). https://doi.org/10.1007/s10040-017-1659-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10040-017-1659-0