Skip to main content
Log in

Estimating regional-scale permeability–depth relations in a fractured-rock terrain using groundwater-flow model calibration

Estimation de la perméabilité à l’échelle régionale dans une formation fracturée à l’aide du calage d’un modèle d’écoulement des eaux souterraines

Estimación de relaciones permeabilidad–profundidad a escala regional en un terreno de roca fracturada mediante la calibración de un modelo de flujo de agua subterránea

利用地下水流模型校正估算断裂岩地域中区域尺度渗透性–深度关系

Estimando a relação permeabilidade–profundidade à escala regional em rochas fraturadas através da calibração de um modelo de escoamento subterrâneo

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The trend of decreasing permeability with depth was estimated in the fractured-rock terrain of the upper Potomac River basin in the eastern USA using model calibration on 200 water-level observations in wells and 12 base-flow observations in subwatersheds. Results indicate that permeability at the 1–10 km scale (for groundwater flowpaths) decreases by several orders of magnitude within the top 100 m of land surface. This depth range represents the transition from the weathered, fractured regolith into unweathered bedrock. This rate of decline is substantially greater than has been observed by previous investigators that have plotted in situ wellbore measurements versus depth. The difference is that regional water levels give information on kilometer-scale connectivity of the regolith and adjacent fracture networks, whereas in situ measurements give information on near-hole fractures and fracture networks. The approach taken was to calibrate model layer-to-layer ratios of hydraulic conductivity (LLKs) for each major rock type. Most rock types gave optimal LLK values of 40–60, where each layer was twice a thick as the one overlying it. Previous estimates of permeability with depth from deeper data showed less of a decline at <300 m than the regional modeling results. There was less certainty in the modeling results deeper than 200 m and for certain rock types where fewer water-level observations were available. The results have implications for improved understanding of watershed-scale groundwater flow and transport, such as for the timing of the migration of pollutants from the water table to streams.

Résumé

La tendance de la perméabilité à décroitre avec la profondeur a été estimée à partir de terrains fracturés du bassin supérieur de fleuve de Potomac dans l’Est des Etats-Unis en utilisant le calage d’un modèle sur 200 observations de niveau d’eau dans les puits et 12 écoulements de base dans des sous-bassins. Les résultats indiquent que la perméabilité à l’échelle de 1–10 km (pour des cheminements d’eaux souterraines) diminue de plusieurs ordres de grandeur dans les 100 premiers mètres sous la surface. Cette gamme de profondeur représente la transition entre le régolithe superficiel altéré et fracturé et la roche saine. Ce taux de décroissance est significativement plus grand que celui observé dans les recherches antérieures qui ont représenté graphiquement des mesures in situ de puits en fonction de la profondeur. La différence provient du fait que les niveaux d’eau régionaux fournissent une information sur la connectivité du régolithe et des réseaux adjacents de fracture à l’échelle du kilomètre, tandis que les mesures in situ fournissent l’information sur des fractures et des réseaux de fracture à proximité du trou. L’approche adoptée était de caler les rapports de conductivité hydraulique (LLK) couche par couche au sein du modèle, pour chaque type principal de roche. La plupart des types de roche ont donné des valeurs optimales de LLK de 40 à 60, pour lesquelles chaque couche était deux fois plus épaisse que celle la recouvrant. Des évaluations précédentes de la perméabilité avec la profondeur sur des données plus profondes ont montré moins de décroissance en-dessous de 300 m que les résultats du modèle régional. Les résultats du modèle en-dessous de 200 m ainsi que pour certains types de roche où peu d’observations de niveau d’eau étaient disponibles sont caractérisés par une plus grande incertitude. Les résultats ont des implications sur l’amélioration de la compréhension de l’écoulement et du transport d’eaux souterraines à l’échelle du bassin versant, telle que le temps de migration des polluants de la nappe vers les cours d’eau.

Resumen

Se estimó la tendencia de la disminución de la permeabilidad con la profundidad en un terreno de roca fracturada de la cuenca alta del río Potomac, en el este de EEUU utilizando la calibración de un modelo sobre 200 observaciones del nivel del agua en pozos y 12 observaciones del caudal de base en subcuencas. Los resultados indican que la permeabilidad a una escala de 1–10 km (para las trayectorias del flujo de agua subterránea) disminuye en varios órdenes de magnitud dentro de los 100 m superiores de la superficie terrestre. Este rango de profundidad representa la transición desde la roca meteorizada, el regolito fracturado a la roca no meteorizada. Esta tasa de disminución es sustancialmente mayor que la observada por investigaciones previas que han representado las mediciones in situ en los pozos versus la profundidad. La diferencia es que los niveles regionales de agua dan información sobre la conectividad a una escala de kilómetros del regolito y de las redes de fracturas adyacentes, mientras que las mediciones in situ dan información sobre las fracturas y redes de fracturas cercanas a los pozos. El enfoque adoptado es calibrar el modelo de las relaciones capa a capa con la conductividad hidráulica (LLKs) para cada tipo principal de roca. La mayoría de los tipos de roca dieron valores óptimos de LLK de 40 a 60, donde cada capa fue dos veces el espesor que la recubre. Las estimaciones previas de la permeabilidad con la profundidad a partir de datos más profundos mostraron una disminución a <300 m que los resultados de los modelos regionales. Existía menor certidumbre en los resultados de los modelos por debajo de 200 m, y para ciertos tipos de roca en que se disponía de un menor número de observaciones del nivel del agua. Los resultados tienen implicancias para una mejor comprensión del flujo y el transporte de agua subterránea en cuencas a gran escala, por ejemplo para la sincronización de la migración de contaminantes desde el nivel freático hacia los cursos de agua.

摘要

根据200个井中水位观测数据和12个次流域基流观测数据,利用模型校正估算了美国东部波托马克河上游地区断裂岩地域渗透性随深度降低的趋势。结果表明,1到10公里尺度上渗透性(地下水流通道)在地表以下100米内降低几个数量级。这个深度范围代表着从风化的、断裂的风化层过渡到未风化的基岩。这个下降速率实际上大于先前调查者观测到的速率,他们绘制了原地井孔随深度的测量结果。差别就是区域水位给出了风化层和毗邻断裂网络公里尺度的连通性信息,而原地测量结果给出了近孔断裂及断裂网络的信息。所采取的方法就是针对每个岩石类型校正水力导水性(LLKs)模型层对层的比率。大多数岩石类型的最优LLK值为40 到60,每层是上覆一层厚度的两倍。先前根据更深入的数据估算的渗透性随深度表化的结果显示,在<300米处,下降的速率比区域模拟的结果要大。对于200米之下的模拟结果及水位观测点很少的某些岩石类型缺少足够的确定性。结果对于增进了解流域尺度地下水水流和运移诸如污染物从水位流到河流的时序具有重要意义。

Resumo

A tendência decrescente de permeabilidade com a profundidade foi estimada para as rocha fraturadas da bacia superior do Rio Potomac no leste dos EUA, usando a calibração de um modelo com base em 200 observações do nível de água e 12 observações do caudal de base nas sub-bacias. Resultados indicam que a permeabilidade à escala de 1–10 km (para escoamento subterrâneo) decresce várias ordens de magnitude nos 100 m mais próximos à superfície do solo. Esta gama de profundidade representa a transição entre os regolitos fraturados intemperizados e o substrato não intemperizado. Esta taxa de declínio é substancialmente superior aos valores observados por investigadores anteriores que compararam medições em captações in situ contra profundidade. A diferença é que os níveis de água regionais fornecem informação sobre a conectividade entre os regolitos e rede de fraturas adjacentes à escala de quilômetros, enquanto as medições in situ fornecem informação sobre fraturas e redes de fraturas próximas da captação. A metodologia adoptada foi de calibrar as razões de condutividade hidráulica entre camadas (LLKs) para cada tipo de rocha significativo. A maioria dos tipos de rocha resultou em valores de LLK ótimos de 40 a 60, quando a espessura da camada era o dobro da cama sobrejacente. Estimativas anteriores da variação de permeabilidade com profundidade a partir de dados mais profundos mostram um declínio menor aos <300 m do que os resultados da modelagem regional. Houve menor certeza nos resultados da modelagem abaixo dos 200 m e para certos tipos de rocha com menor número de observações disponíveis. Os resultados contribuem para aumentar a compreensão do escoamento e transporte subterrâneo à escala de bacia, tais como os tempos de migração de poluentes até os cursos d’água.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Berkowitz B (2002) Characterizing flow and transport in fractured geological media: a review. Adv Water Resour 25:861–884

    Article  Google Scholar 

  • Boutt DF, Diggins P, Mabee S (2010) A field study (Massachusetts, USA) of the factors controlling the depth of groundwater flow systems in crystalline fractured-rock terrain. Hydrogeol J 18:1839–1854

    Article  Google Scholar 

  • Brace WF (1980) Permeability of crystalline and argillaceous rocks. Int J Rock Mech Min Sci Geomech Abstr 17:241–251

    Article  Google Scholar 

  • Daly C, Halbleib M, Smith JI, Gibson WP, Doggett MK, Taylor GH, Curtis J, Pasteris PP (2008) Physiographically-sensitive mapping of temperature and precipitation across the conterminous United States. Int J Climatol 29:2031–2064

  • Gale JE, Wilson CR, Witherspoon PA, Wilson CR (1982) Swedish-American cooperative program on radioactive waste storage in mined caverns in crystalline rock. SKB technical report no. 49. Lawrence Berkeley Laboratory, Berkeley, CA

    Google Scholar 

  • Guihéneuf N, Boisson A, Bour O, Dewandel B, Perrin J, Dausse A, Viossanges M, Chandra A, Ahmed S, Maréchal JC (2014) Groundwater flows in weathered crystalline rocks: impact of piezometric variations and depth-dependent fracture connectivity. J Hydrol 511:320–334

    Article  Google Scholar 

  • Harbaugh AW (2005) MODFLOW-2005, The U.S. Geological Survey modular ground-water model: the ground-water flow process. US Geol Surv Techniques Methods 6-A16

  • Hill MC, Tiedeman CR (2006) Effective groundwater model calibration: with analysis of data, sensitivities, predictions, and uncertainty. Wiley, Hoboken, NJ, 455 pp

    Google Scholar 

  • Ingebritsen SE, Manning CE (1999) Geological implications of geothermal data and metamorphic systems. Geology 27:1107–1110

    Article  Google Scholar 

  • Johnston CD (1987) Preferred water flow and localised recharge in a variable regolith. J Hydrol 94:129–142

    Article  Google Scholar 

  • Manning CE, Ingebritsen SE (1999) Permeability of the continental crust: implications of geothermal data and metamorphic systems. Rev Geophys 37(1):127–150

    Article  Google Scholar 

  • Niswonger RG, Panday S, Ibaraki M (2011) MODFLOW-NWT, A Newton formulation for MODFLOW-2005. US Geol Surv Techniques Methods 6-A37

  • Poeter EP, Hill MC (1998) Documentation of UCODE, a computer code for universal inverse modeling. US Geol Surv Water Resour Invest Rep 98-4080, 116 pp

  • Ranjram M, Gleeson T, Luijendijk E (2014) Is the permeability of crystalline rock in the shallow crust related to depth, lithology or tectonic setting? Geofluids 15:106–119

    Article  Google Scholar 

  • Sanford WE, Selnick DL (2013) Estimation of evapotranspiration across the conterminous United States using a regression with climate and land-cover data. J Am Water Resour Assoc 49(1):217–230

    Article  Google Scholar 

  • Sanford WE, Nelms DL, Pope JP, Selnick DL (2012) Quantifying components of the hydrologic cycle in Virginia using chemical hydrograph separation and multiple regression analysis. US Geol Surv Sci Invest Rep 2011-5198, 152 pp

  • Sanford WE, Nelms DL, Pope JP, Selnick DL (2015) Estimating mean long-term hydrologic budget components for watersheds and counties: an application to the commonwealth of Virginia, USA. Hydrol Curr Res 6(1):1–22

    Google Scholar 

  • Schmonov VM, Vitiovtova VM, Zharikov AV, Grafchikov AA (2003) Permeability of the continental crust: implications of experimental data. J Geochem Explor 78–79:697–699

    Article  Google Scholar 

  • Stober I, Bucher K (2014) Significance of hydraulic conductivity as precondition to fluid flow in crystalline basement and its impact on fluid-rock interaction processes. Proceedings World Geothermal Congress 2015, Melbourne, Australia, April 2015, 5 pp

  • White WB (1989) Geomorphology and hydrology of karst terrains. Oxford University Press, New York

    Book  Google Scholar 

  • Yager RM, Southworth S, Voss CI (2008) Simulation of ground-water flow in the Shenandoah Valley, Virginia and West Virginia, using variable-direction anisotropy in hydraulic conductivity to represent bedrock structure. US Geol Surv Sci Invest Rep 2008-5002, 54 pp

  • Yager RM, Plummer LN, LJ Kauffman LJ, Doctor DH, Nelms DL, Schlosser P (2013) Comparison of age distributions estimated from environmental tracers by using binary-dilution and numerical models of fractured and folded karst: Shenandoah Valley of Virginia and West Virginia, USA. Hydrogeol J 6:1193–1127

Download references

Acknowledgments

Jason Pope and David Selnick of the USGS assisted with GIS construction of the model grid and input data sets. Constructive comments received from a USGS reviewer and two anonymous journal reviewers improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ward E. Sanford.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 33564 kb)

ESM 2

(PDF 149 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanford, W.E. Estimating regional-scale permeability–depth relations in a fractured-rock terrain using groundwater-flow model calibration. Hydrogeol J 25, 405–419 (2017). https://doi.org/10.1007/s10040-016-1483-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-016-1483-y

Keywords

Navigation