Skip to main content

Advertisement

Log in

Analysis of subsurface temperature data to quantify groundwater recharge rates in a closed Altiplano basin, northern Chile

Analyse de données de température de subsurface pour quantifier les taux de recharge d’un bassin fermé de l’Altiplano, Nord du Chili

Análisis de los datos de temperatura subsuperficial para cuantificar las tasas de recarga del agua subterránea en una cuenca cerrada del Altiplano, norte de Chile

分析地表以下温度资料以量化智利北部封闭的Altiplano盆地地下水补给量

Análise de dados de temperatura subsuperficial para quantificar as taxas de recarga das águas subterrâneas em uma bacia fechada do Altiplano, Norte do Chile

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Quantifying groundwater recharge is a fundamental part of groundwater resource assessment and management, and is requisite to determining the safe yield of an aquifer. Natural groundwater recharge in arid and semi-arid regions comprises several mechanisms: in-place, mountain-front, and mountain-block recharge. A field study was undertaken in a high-plain basin in the Altiplano region of northern Chile to quantify the magnitude of in-place and mountain-front recharge. Water fluxes corresponding to both recharge mechanisms were calculated using heat as a natural tracer. To quantify in-place recharge, time-series temperature data in cased boreholes were collected, and the annual fluctuation at multiple depths analyzed to infer the water flux through the unsaturated zone. To quantify mountain-front recharge, time-series temperature data were collected in perennial and ephemeral stream channels. Streambed thermographs were analyzed to determine the onset and duration of flow in ephemeral channels, and the vertical water fluxes into both perennial and ephemeral channels. The point flux estimates in streambeds and the unsaturated zone were upscaled to channel and basin-floor areas to provide comparative estimates of the range of volumetric recharge rates corresponding to each recharge mechanism. The results of this study show that mountain-front recharge is substantially more important than in-place recharge in this basin. The results further demonstrate the worth of time-series subsurface temperature data to characterize both in-place and mountain-front recharge processes.

Résumé

Quantifier la recharge en eau souterraine est une partie fondamentale de l’évaluation et de la gestion des ressources en eau souterraine, et un prérequis pour déterminer le débit d’exploitation sécuritaire d’un aquifère. La recharge naturelle des eaux souterraines dans les régions arides et semi-arides repose sur plusieurs mécanismes: recharge directe, recharge en piémont et recharge en massif montagneux. Une étude de terrain a été entreprise dans un bassin de haute plaine de la région de l’Altiplano au Nord du Chili pour quantifier l’amplitude de la recharge directe et de la recharge en piémont. Les flux d’eau correspondant aux deux mécanismes de recharge ont été calculés en utilisant la chaleur comme traceur naturel. Pour quantifier la recharge directe, les séries chronologiques de données de température ont été collectées en forages tubés, et les variations annuelles à des profondeurs multiples analysées pour déduire le flux d’infiltration à travers la zone non saturée. Pour quantifier la recharge en piémont, des séries chronologiques de données de température ont été collectées dans des chenaux pérennes et éphémères. Des thermographies dans les lits de chenaux ont été analysées pour déterminer le début et la durée des écoulements dans les chenaux éphémères, ainsi que les flux d’eau verticaux dans des chenaux pérennes et éphémères. Les estimations ponctuelles de flux dans les lits des cours d’eau et la zone non saturée ont été extrapolées aux zones de chenal et du bassin pour fournir des estimations comparatives de la gamme des taux de recharge volumétriques correspondant à chaque mécanisme de recharge. Les résultats de cette étude montrent que la recharge en piémont est substantiellement plus importante que la recharge directe dans le bassin. Les résultats montrent de plus l’importance des séries chronologiques de données de température de subsurface pour caractériser les processus de recharge aussi bien en place qu’en piémont.

Abstract

La cuantificación de la recarga del agua subterránea es una parte fundamental en la evaluación y gestión de los recursos de aguas subterráneas, y es necesaria para la determinación del rendimiento seguro de un acuífero. La recarga natural de agua subterránea en las regiones áridas y semiáridas comprende varios mecanismos: recarga in situ, en el frente montañoso, y en el bloque montañoso Se llevó a cabo un estudio de campo en una cuenca de la llanura alta en la región del Altiplano en el norte de Chile para cuantificar la magnitud de la recarga in situ y en el frente montañoso. Los flujos de agua correspondientes a ambos mecanismos de recarga se calcularon utilizando el calor como un trazador natural. Para cuantificar la recarga in situ, se recogieron las series de tiempo de datos de temperaturas en pozos entubados, y la fluctuación anual en múltiples profundidades analizados para inferir el flujo de agua a través de la zona no saturada. Para cuantificar la recarga del frente montañoso, se recogieron series de tiempo de datos de temperatura en los canales de corrientes perennes y efímeras. Se analizaron los datos termográficos del lecho de la corriente para determinar el inicio y duración del flujo en los canales efímeros, y los flujos de agua verticales en ambos canales perennes y efímeros. Las estimaciones puntuales de flujo en los lechos de ríos y en la zona no saturada fueron escalados a las áreas del canal y del fondo de la cuenca para proporcionar estimaciones comparativas del rango de las tasas volumétricas de recarga correspondientes a cada mecanismo de recarga. Los resultados de este estudio muestran que la recarga del frente montañoso es sustancialmente más importante que la recarga in situ en esta cuenca. Los resultados demuestran además el valor de los datos de temperatura subsuperficial de series de tiempo para caracterizar tanto los procesos de recarga in situ como los del frente montañoso.

摘要

量化地下水补给是地下水资源评价和管理的一项重要组成部分,对于确定含水层的安全出水量必不可少。干旱和半干旱地区的天然地下水补给包含几个机理:就地补给、山前补给和山区补给。在智利北部Altiplano地区一个高海拔平原盆地进行了野外研究,以量化就地补给和山前补给的大小。采用热量作为天然示踪剂计算了与两种补给机理相关的水通量。为了量化就地补给量,收集了带套管的钻孔中的时间序列温度资料,分析了多重深度的每年的波动,推断出通过非饱和带的水通量。为了量化山前补给量,收集了常年有水和短暂有水河流的时间序列温度资料。分析了河床温度记录仪数据以确定短暂有水河流的开始时间和持续时间、以及进入常年有水和短暂有水河流垂直水通量。河床和非饱和带的点通量估算值放大到渠道和盆底区域,以提供每个补给机理体积补给率范围比较估算值。这项研究的结果显示,在这个盆地,山前补给实际上比就地补给更重要。结果进一步展示了时间序列地表以下温度资料对于描述就地补给和山前补给过程的价值。

Resumo

A quantificação da recarga das águas subterrâneas é uma parte fundamental da avaliação do recurso hídrico subterrâneo, e é requisito para determinar a produção segura de um aquífero. A recarga natural das águas subterrâneas em regiões áridas e semiáridas compreende diversos mecanismos; recarga local, no front da montanha e no bloco da montanha. Um estudo de campo foi conduzido em uma bacia de planalto na região do Altiplano, norte do Chile para quantificar a magnitude da recarga local e em front de montanha. Os fluxos d’água correspondendo a ambos mecanismos de recarga foram calculados utilizando calor como traçador natural. Para quantificar a recarga local, foram coletadas séries temporais de dados de temperatura em poços fechados, e analisada a flutuação anual em múltiplas profundidades para inferir sobre o fluxo das águas subterrâneas na zona não saturada. Para quantificar a recarga no front da montanha, foram coletadas séries temporais de dados de temperatura em cursos d’água perenes e efêmeros, e os fluxos de água verticais em ambos canais perene e efêmero. As estimativas de fluxo pontuais nos leitos de rio e na zona não saturada tiveram a escala aumentada para áreas dos cursos d’água e do leito da bacia para fornecer estimativas comparativas sobre o alcance das taxas volumétricas de recarga correspondentes a cada mecanismo de recarga. Os resultados desse estudo mostram que a recarga no front da montanha é substancialmente mais importante que a recarga local nessa bacia. Os resultados demonstram adiante o uso das séries temporais de dados de temperatura para caracterizar ambos processos de recarga local e no front da montanha.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ajami H, Troch PA, Maddock T III, Meixner T, Eastoe C (2011) Quantifying mountain block recharge by means of catchment-scale storage-discharge relationships. Water Resour Res 47:W04504. doi:10.1029/2010WR009598

    Article  Google Scholar 

  • Ajami H, Meixner T, Dominguez F, Hogan J, Maddock T III (2012) Seasonalizing mountain system recharge in semi-arid basin: climate change impacts. Ground Water 50(4):585–597

    Article  Google Scholar 

  • Blasch KW, Ferré TPA, Hoffmann JP (2004) A statistical technique for interpreting streamflow timing using streambed sediment thermographs. Vadose Zone J 3:936–946

    Article  Google Scholar 

  • Constantz J, Thomas CL (1996) The use of streambed temperature profiles to estimate the depth, duration, and rate of percolation beneath arroyos. Water Resour Res 32(12):3597–3602

    Article  Google Scholar 

  • Constantz J, Tyler SW, Kwicklis E (2003) Temperature-profile methods for estimating percolation rates in arid environments. Vadose Zone J 2:12–24

    Article  Google Scholar 

  • Cuthbert MO, Mackay R (2013) Impacts of nonuniform flow on estimates of vertical streambed flux. Water Resour Res 49:19–28

    Article  Google Scholar 

  • Dickinson JE, Ferré TPA, Bakker M, Crompton B (2014) A screening tool for delineating subregions of steady recharge within groundwater models. Vadose Zone J 13(6)

  • DigitalGlobe (2012), QuickBird scene 052664501020_01, Level Standard 2A. DigitalGlobe, Longmont, CO

  • Dirección General de Aguas (DGA) (2015) Official hydrometeorologic information and water quality online database. Chilean Gov., Santiago, Chile. http://snia.dga.cl/BNAConsultas/reportes. Accessed September 2016

  • Dowman CE, Ferré TPA, Hoffmann JP, Rucker DF, Callegary JB (2003) Quantifying ephemeral streambed infiltration from downhole temperature measurements collected before and after streamflow. Vadose Zone J 2:595–601

    Article  Google Scholar 

  • Duffy CJ (2004) Semi-discrete dynamical model for mountain-front recharge and water balance estimation, Rio Grande of southern Colorado and New Mexico. In: Groundwater recharge in a desert environment: the Southwestern United States. In: Hogan JF, Phillips FM, Scanlon BR (eds) Water science and applications series, vol 9. American Geophysical Union, Washington, DC, pp 255–271

    Google Scholar 

  • Edwards RG (1991) Evaluacion de los recursos hidricos en los Salares de Ascotán-Carcote, Ojos de San Pedro, Quebrada Perdiz y otros, y sus posibilidades de aprovechamiento [Assessment of water resources in the Salares of Ascotán–Carcote, Ojos de San Pedro, Quebrada Partridge and others, and their ability to benefit]. Report prepared by Ingenieros Ltd. For CODELCO-Chile, Chuquicamata Division Santiago, Chile, 83 pp

  • Farouki (1981) Thermal properties of soils. Monograph 81-1, US Army Cold Regions Research and Engineering Lab., Hanover, NH, 155 pp

  • Flint LE, Flint AL (2007) Regional analysis of ground-water recharge. US Geol Surv Prof Pap 1703

  • Garreaud R, Vuille M, Clement AC (2003) The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeogr Palaeoclimatol Palaeoecol 194:5–22

    Article  Google Scholar 

  • Gordon RP, Lautz LK, Briggs MA, McKenzie JM (2012) Automated calculation of vertical pore-water flux from field temperature time-series using the VFLUX method and computer program. J Hydrol 420–421:142–158

    Article  Google Scholar 

  • Grilli A, Aguirre E, Durán M, Townsend F, González A (1999) Origen de las aguas subterraneas del sector Pica-Salar del Huasco, Provincia de Iquique, I Región de Tarapacá. In: XIII Congreso de Ingenieria Sanitaria y Ambiental (AIDIS)-Chile. Antofagasta, Chile, Oct. 1999

  • Gungle B (2006) Timing and duration of flow in ephemeral streams of the Sierra Vista Subwatershed of the Upper San Pedro Basin, Cochise County, Southeastern Arizona. US Geol Surv Sci Invest Rep 2005-5190, 57 pp

  • Hoffmann JP, Blasch KW, Pool DR, Bailey MA, Callegary JB (2007) Estimated infiltration, percolation, and recharge rates at the Rillito Creek focused recharge investigation site, Pima County, Arizona, chap H. US Geol Surv Prof Pap 1703

  • Houston J (2002) Groundwater recharge through an alluvial fan in the Atacama Desert, northern Chile: mechanisms, magnitudes, and causes. Hydrol Process 16:3019–3035

    Article  Google Scholar 

  • Houston J (2007) Recharge to groundwater in the Turi Basin, northern Chile: an evaluation based on tritium and chloride mass balance techniques. J Hydrol 334:534–544

    Article  Google Scholar 

  • Houston J (2009) A recharge model for high altitude, arid, Andean aquifers. Hydrol Process 23:2383–2393

    Article  Google Scholar 

  • Izbicki J, Michel R (2002) Use of temperature data to estimate infiltration from streams in the western Mojave Desert, USA. In: Foo DY (ed) Balancing the ground water budget (CD-ROM). IAH, Darwin, NT, Australia

  • Johansen O (1975) Thermal conductivity of soils. PhD Thesis, Institute for Kjoleteknikk, Trondheim, Norway. US. Army Cold Regions Res Eng Lab Draft Translation 637, 1977, US. Army Cold Regions Res Eng Lab, Hanover, NH

  • Kearns AK, Hendricx JMH (1998) Temporal variability of diffuse groundwater recharge in New Mexico. New Mexico Water Resour Res Institute Tech Complet Rep 309, New Mexico Water Resour Res Institute, Las Cruces, NM, 43 pp

  • Keese KE, Scanlon BR, Reedy RC (2005) Assessing controls on diffuse groundwater recharge using unsaturated flow modeling. Water Resour Res 41. doi:10.1029/2004WR003841

  • Luce CH, Tonina D, Gariglio F, Applebee R (2013) Solutions for the diurnally forced advection-diffusion equation to estimate bulk fluid velocity and diffusivity in streambeds from temperature time-series. Water Resour Res 49:488–506

    Article  Google Scholar 

  • McCallum AM, Andersen MS, Rau GC, Larsen JR, Acworth RI (2014) River–aquifer interactions in a semiarid environment investigated using point and reach measurements. Water Resour Res. doi:10.1002/2012WR012922

    Google Scholar 

  • Meixner T, Manning AH, Stonestrom DA, Allen DM, Ajami H, Blasch KW, Brookfield AE, Castro CL, Clark JF, Gochis DJ, Flint AL, Neff KL, Niraula R, Rodell M, Scanlon BR, Singha K, Walvoord MA (2016) Implications of projected climate change for groundwater recharge in the western United States. J Hydrol 534:124–138

    Article  Google Scholar 

  • Montgomery and Associates (2007) Results from exploration and monitor well construction and testing and water chemistry investigations, Pampa Penjamo, Salar de Lagunillas and Loma Chislaca Areas, Chile (in Spanish). Report prepared for Cerro Colorado, Montgomery, Tuscon, AZ, 79 pp

  • Montgomery and Associates (2013) Resultados del desarrollo y aplicación de un modelo actualizado de flujo de agua subterránea en la cuenca del Salar de Lagunillas, Chile [Results of development and implementation of an updated groundwater flow in the basin of Salar de Lagunillas model, Chile]. Report prepared for Cerro Colorado, Montgomery, Tuscon, AZ, 77 pp

  • Ng GHC, McLaughlin D (2009) Using data assimilation to identify diffuse recharge mechanisms from chemical and physical data in the unsaturated zone. Water Resour Res 45. doi:10.1029/2009WR007831

  • Pockman WT, Small EE (2010) The influence of spatial patterns of soil moisture on the grass and shrub responses to a summer rainstorm in a Chihuahuan Desert ecotone. Ecosystems 13(4):511–525

    Article  Google Scholar 

  • Rau GC, Andersen MS, McCallum AM, Roshan H, Acworth RI (2014) Heat as a tracer to quantify water flow in near-surface sediments. Earth Sci Rev 129:40–58

    Article  Google Scholar 

  • Rawls WJ, Brakensiek DL, Saxton KE (1982) Estimation of soil water properties. Transactions of the American Society of Agricultural and Biological Engineers, Paper no. 81-2510, ASABE, St. Joseph, MI

  • Ronan AD, Prudic DE, Thodal CE, Constantz J (1998) Field study and simulation of diurnal temperature effects on infiltration and variably saturated flow beneath an ephemeral stream. Water Resour Res 34(9):2137–2153

    Article  Google Scholar 

  • Sapriza-Azuri G, Jódar J, Navarro V, Slooten LJ, Carrera J, Gupta HV (2015) Impacts of rainfall spatial variability on hydrogeological response. Water Resour Res 51(2):1300–1314. doi:10.1002/2014WR016168

  • Sayes GJ (1978) Cuadrangulo Collacagua y Salar del Huasco [Collacagua quadrangle and Salar del Huasco]. Instituto de Investigaciones Geologicas, Santiago, Chile

  • Scanlon BR (2004) Evaluation of methods of estimating recharge in semiarid and arid regions in the southwestern U.S., In: Hogan JF, Phillips FM, Scanlon BR (eds) Groundwater recharge in a desert environment: the southwestern United States. Water Science and Applications Series, vol 9. American Geophysical Union, Washington, DC, pp 235–254

  • Scanlon BR, Keese KE, Flint AL, Flint LE, Gaye CB, Edmunds WM, Simmers I (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Process 20:3335–3370

  • Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10:18–39

    Article  Google Scholar 

  • Shan C, Bodvarsson G (2004) An analytical solution for estimating percolation rate by fitting temperature profiles in the vadose zone. J Contam Hydrol 68:83–95

    Article  Google Scholar 

  • Shanafield M, Cook PG (2014) Transmission losses, infiltration, and groundwater recharge through ephemeral and intermittent streambeds: a review of applied methods. J Hydrol 511:518–529

    Article  Google Scholar 

  • Space Imaging (2005) IKONOS scene po-176157. Level Standard Geometrically Corrected, GeoEye, Dulles, VA

  • Stallman RW (1965) Steady one-dimensional fluid flow in a semi-infinite porous medium with sinusoidal surface temperature. J Geophys Res 70(12):2821–2827

    Article  Google Scholar 

  • Stonestrom DA, Constantz J, Ferré TPA, Leake SA (eds) (2007) Groundwater recharge in the arid and semiarid United States. US Geol Surv Prof Pap 1703

  • Timlin D, Starr J, Cady R, Nicholson T (2003) Comparing ground-water recharge estimates using advanced monitoring techniques and models. US Nuclear Regulatory Commission CR-6836, USNRC, Washington, DC, 73 pp

  • Tyler SW, Chapman JB, Conrad SH, Hammermeister DP, Blout DO, Miller JJ, Sully MJ, Ginanni JM (1996) Soil-water flux in the southern Great Basin, United States: Temporal and spatial variations over the last 120,000 years. Water Resour Res 32(6):1481–1499

  • Walvoord MA, Plummer MA, Phillips FM, Wolfsberg AV (2002) Deep arid system hydrodynamics: 1. equilibrium states and response times in thick desert vadose zones. Water Resour Res 38. doi:10.1029/2001WR000824

  • Walvoord MA, Stonestrom DA, Andraski BJ, Stiegl RG (2004) Constraining the inferred paleohydrologic evolution of a deep unsaturated zone in the Amargosa Desert. Vadose Zone J 3:502–512

    Article  Google Scholar 

  • Wilson JL, Guan H (2004) Mountain-block hydrology and mountain-front recharge. In: Groundwater recharge in a desert environment: the Southwestern United States. AGU, Washington, DC. doi:10.1029/009WSA08

  • Winter TC, Harvey JW, Franke OL, Alley WM (1998) Ground water and surface water: a single resource. US Geol Surv Circ 1139

  • Young PC, Taylor CJ, Tych W, Pegregal DG, McKenna PG (2010) The captain toolbox. Centre for Research on Environmental Systems and Statistics, Lancaster University, UK. http://www.es.lancs.ac.uk/cres/captain. Accessed September 2016

Download references

Acknowledgements

The authors thank the BHP-Billiton Cluster Program for funding assistance and for permission to publish this report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. P. Kikuchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kikuchi, C.P., Ferré, T.P.A. Analysis of subsurface temperature data to quantify groundwater recharge rates in a closed Altiplano basin, northern Chile. Hydrogeol J 25, 103–121 (2017). https://doi.org/10.1007/s10040-016-1472-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-016-1472-1

Keywords

Navigation