Skip to main content

Advertisement

Log in

Modeling anthropogenic boron in groundwater flow and discharge at Volusia Blue Spring (Florida, USA)

Modélisation du bore d’origine anthropique dans l’écoulement des eaux souterraines et du debit de la source Bleue de Volusia (Floride, Etats-Unis d’Amérique)

Modelado de boro antropogénico en el flujo del agua subterránea y descarga en el Volusia Blue Spring (Florida, EEUU)

模拟地下水水流中源自人为活动的硼及(美佛罗里达州)卢西亚蓝泉的排泄

Modelagem do boro antropogênico no fluxo das águas subterrâneas e descarga na Volusia Blue Spring (Flórida, EUA)

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Volusia Blue Spring (VBS) is the largest spring along the St. Johns River in Florida (USA) and the spring pool is refuge for hundreds of manatees during winter months. However, the water quality of the spring flow has been degraded due to urbanization in the past few decades. A three-dimensional contaminant fate and transport model, utilizing MODFLOW-2000 and MT3DMS, was developed to simulate boron transport in the Upper Florida Aquifer, which sustains the VBS spring discharge. The VBS model relied on information and data related to natural water features, rainfall, land use, water use, treated wastewater discharge, septic tank effluent flows, and fertilizers as inputs to simulate boron transport. The model was calibrated against field-observed water levels, spring discharge, and analysis of boron in water samples. The calibrated VBS model yielded a root-mean-square-error value of 1.8 m for the head and 17.7 μg/L for boron concentrations within the springshed. Model results show that anthropogenic boron from surrounding urbanized areas contributes to the boron found at Volusia Blue Spring.

Résumé

La source Bleue de Volusia (VBS) est la plus grande source le long de la rivière St Johns en Floride (Etats-Unis d’Amérique) et le bassin de la source est le refuge pour des centaines de lamantins durant les mois d’hiver. Cependant, la qualité de l’eau qui s’écoule à la source a été dégradée à cause de l’urbanisation au cours des dernières décennies. Un modèle en trois dimensions de l’atténuation des contaminants et du transport, en utilisant MODFLOW-2000 et MT3DMS, a été développé pour simuler le transport du bore dans l’aquifère supérieur de Floride, qui soutient le débit de la source VBS. Le modèle VBS est basée sur des informations et données associées aux caractéristiques naturelles de l’eau, précipitations, occupations des sols, utilisation de l’eau, débit des eaux usées traitées, flux des effluents des fosses septiques, et fertilisants en tant que données d’entrée pour simuler le transport du bore. Le modèle a été calibré par rapport aux niveaux d’eau observés sur le terrain, débit de la source, et l’analyse du bore dans les échantillons de bore. Le modèle VBS calibré fournit une valeur d’erreur des moindres carrés moyens de 1.8 m pour la charge et de 17.7 g/L pour les concentrations de bore au sein du bassin versant de la source. Les résultats du modèle montrent que le bore d’origine anthropique des zones urbanisées environnantes contribue au teneur de bore trouvés au niveau de la source.

Resumen

El Volusia Blue Spring (VBS) es mayor manantial a lo largo del río St. Johns en Florida (EEUU) y el reservorio de aguas es refugio para cientos de manatíes durante los meses de invierno. Sin embargo, la calidad del agua de los manantiales se ha degradado debido a la urbanización en las últimas décadas. Se desarrolló un modelo tridimensional de transporte y destino de los contaminantes con la utilización de MODFLOW-2000 y MT3DMS, para simular el transporte de boro en el Upper Florida Aquifer, que sustenta la descarga del manantial VBS. El modelo del VBS para simular el transporte de boro se basó en la información y los datos relacionados con las características naturales del agua, la lluvia, el uso del suelo, el uso del agua, la descarga de aguas residuales tratadas, los flujos de efluente de tanques sépticos y los fertilizantes como entradas. El modelo fue calibrado contra los niveles de agua observados en el campo, la descarga del manantial, y los análisis de boro en las muestras de agua. El modelo VBS calibrado obtuvo un valor de error cuadrático medio 1.8 m para la carga hidráulica 17.7 g/L para las concentraciones de boro en la descarga del manantial. Los resultados del modelo muestran que el boro antropogénico de los alrededores de las zonas urbanizadas contribuye al boro que se encuentra en los manantiales.

摘要

卢西亚蓝泉是沿(美国)佛罗里达州圣约翰河的最大泉,泉口区域是冬季成百上千只海牛的庇护所。然而,由于过去几十年的城市化,泉水的水质下降。利用MODFLOW-2000 and MT3DMS建立了三维污染物归趋模型,用来模拟上佛罗里达含水层中的硼运移,上佛罗里达含水层支撑着卢西亚蓝泉的排泄。卢西亚蓝泉模型依赖于天然水特征、降雨、土地利用、水利用、处理过水的排泄、化粪池污水流及化肥等信息和资料做为输入项来模拟硼的运移。针对室外观测的水位、泉排泄量及水样中的硼分析结果对模型进行了校正。校正的卢西亚蓝泉模型得出的泉流域水头根平均平方差值为1.8 米,硼含量为17.7 g/L。模型结果显示,泉出口发现的硼就是来自周围城市化区的源自人类活动的硼。

Resumo

Volusia Blue Spring (VBS) é a maior nascente no curso do Rio St. Johns River na Flórida (EUA) e a piscina da nascente é refúgio para centenas de peixes-boi durante os meses de inverno. Entretanto, a qualidade da água da nascente tem sido degradada em função da urbanização nos últimos anos. Um modelo tridimensional de destino contaminante e transporte, utilizando MODFLOW-2000 e MT3DMS, foi desenvolvido para simular o transporte de boro na Aquífero da Flórida Superior, que sustenta a descarga da nascente VBS. O modelo VBS conta com informações e dados relacionados a feições naturais da água, precipitação, uso da terra, uso da água, lançamento de águas residuais tratadas, fluxo de efluentes de tanques sépticos, e fertilizantes como entradas para simular o transporte de boro. O modelo foi calibrado em contraste à níveis d’águas observados a campo, vazão da nascente, e análises quanto ao boro em amostras de águas. O modelo VBS calibrado colheu um erro da raiz do valor quadrático médio de 1.8 m para carga e 17.7 g/L para concentrações de boro dentro da cabeceira da nascente. Os resultados do modelo mostram que o boro antropogênico ao redor das área urbanizadas contribuem para o boro encontrado na abertura da nascente.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AEI (2010) Transient groundwater flow model Floridan aquifer system in west Volusia County and vicinity. Andreyev Eng., Sanford, FL

    Google Scholar 

  • Ahn J (1997) Transport of weapons-grade plutonium and boron through fractured geologic media. Nucl Technol 117(3):316–328

    Google Scholar 

  • Almasri MN, Kaluarachchi JJ (2005) Modular neural networks to predict the nitrate distribution in ground water using the on-ground nitrogen loading and recharge data. Environ Model Softw 20(7):851–871

    Article  Google Scholar 

  • Almasri MN, Kaluarachchi JJ (2007) Modeling nitrate contamination of groundwater in agricultural watersheds. J Hydrol 343:211–229

    Article  Google Scholar 

  • Barber LB, Thurman EM, Schroeder MP (1988) Long-term fate of organic micropollutants in sewage-contaminated groundwater. Environ Sci Technol 22(2):205–211

  • Bassett RL, Buszka PM, Davidson GR, Chong-Diaz D (1995) Identification of groundwater solute sources using boron isotopic composition. Environ Sci Technol 29(12):2915–2922

  • Benson SM, White AF, Halman S et al (1991) Groundwater contamination at the Kesterson Reservoir, California: 1. hydrogeologic setting and conservative solute transport. Water Resour Res 27(6):1071–1084

  • Chetelat B, Gaillardet J (2005) Boron isotopes in the Seine River, France: a probe of anthropogenic contamination. Environ Sci Technol 39(8):2486–2493

    Article  Google Scholar 

  • Conan C, Bouraoui F, Turpin N et al (2003) Modeling flow and nitrate fate at catchment scale in Brittany (France). J Environ Qual 32:2026–2032

    Article  Google Scholar 

  • FDEP (Florida Department of Environmental Protection) (2010) Surface water quality standards. Chapter 62-302. http://www.dep.state.fl.us/legal/Rules/shared/62-302/62-302.pdf. Accessed August 2016

  • FDEP (2015) Technical meeting 01292015, Florida Department of Environmental Protection. http://publicfiles.dep.state.fl.us/DEAR/BMAP/MiddleStJohns/VolusiaBlue/BMAP/Meetings/2015/Technical_Meeting%2001292015/. Accessed 25 August 2015

  • FDOH (2015) EHD 2015 July Inventory, Florida Department of Health. Bureau of Environmental Health, Tallahassee, FL

    Google Scholar 

  • Florida Geological Survey (2015) Subsidence incident reports. http://ca.dep.state.fl.us/mapdirect/?focus=fgssinkholes. Accessed 16 July 2015

  • Forsberg C, Jinnerot D, Davidsson L (1967) The influence of synthetic detergents on the growth of algae. Vatten 23(1):2–16

    Google Scholar 

  • Goldberg S (1997) Reactions of boron with soils. Plant Soil 193:35–48

    Article  Google Scholar 

  • Gupta UC (1993) Boron and its role in crop production. CRC, Boca Raton, FL

  • Harbaugh AE, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the U.S. Geological Survey modular groundwater model user guide to modularization concepts and the groundwater flow process. US Geol Surv Open-File Rep 00-92

  • Hasenmueller EA, Criss RE (2013) Multiple sources of boron in urban surface waters and groundwaters. Sci Total Environ 447:235–247

    Article  Google Scholar 

  • Hazen and Sawyer (2009) Florida onsite sewage nitrogen reduction strategies study: Literature review of nitrogen reduction technologies for onsite sewage treatment systems. Florida Department of Health. http://www.floridahealth.gov/environmental-health/onsite-sewage/research/_documents/nitrogen/task-a-technologies-final.pdf. Accessed 03 January 2015

  • Hickey JJ (1989) Circular convection during subsurface injection of liquid waste, St. Petersburg, Florida. Water Resour Res 25(7):1481–1494

    Article  Google Scholar 

  • Holland K, Bridger K (2014) Nutrient TMDL for Blue Spring (Volusia County) and Blue Spring Run (Volusia County), WBIDs 28933 and 28933A, Florida Department of Environmental Protection, Tallahassee, FL

  • Hutchings WC, Tarbox DL (2003) A model of seawater intrusion in surficial and confined aquifers of northeast Florida. Paper presented at The Second International Conference on Saltwater Intrusion and Coastal Aquifers: Monitoring, Modeling, and Management. Mérida, Yucatán, Mexico, 30 March–2 April 2003

  • Katz B (1992) Hydrochemistry of the Upper Floridan aquifer, Florida. US Geol Surv Open File Rep 91-4196

  • Katz BG, Hornsby H (1998) A preliminary assessment of sources of nitrate in springwaters, Suwannee River Basin, Florida. US Geol Surv Open File Rep 98-69

  • Lautz LK, Siegel DI (2006) Modeling surface and ground water mixing in the hyporheic zone using MODFLOW and MT3D. Adv Water Resour 29(11):1618–1633

    Article  Google Scholar 

  • Leenhouts JM, Basset RL (1998) Utilization of intrinsic boron isotopes as co‐migrating tracers for identifying potential nitrate contamination sources. Groundwater 36(2):240–250

    Article  Google Scholar 

  • McGurk BE, Presley PF (2002) Simulation of the effects of groundwater withdrawals on the Floridan aquifer system in east-central Florida: model expansion and revision. St. Johns River Water Management District, Jacksonville, FL

  • Mercer JW, Lester BH, Thomas SD, Bartel L (1986) Simulation of saltwater intrusion in Volusia County, Florida. J Am Water Resour Assoc 22(6):951–965

    Article  Google Scholar 

  • NOAA (2015) Southern Region Headquarters, National Weather Service. http://www.srh.noaa.gov/. Accessed 27 August 2015

  • Oppenheimer J, Eaton A, Badruzzaman M et al (2011) Occurrence and suitability of sucralose as an indicator compound of wastewater loading to surface waters in urbanized regions. Water Res 45(13):4019–4027

    Article  Google Scholar 

  • Palmer MR, Spivack AJ, Edmond JM (1987) Temperature and pH controls over isotopic fractionation during adsorption of boron on marine clay. Geochim Cosmochim Ac 51(9):2319–2323

    Article  Google Scholar 

  • Phelps GG (2004) Chemistry of ground water in the Silver Springs Basin, Florida, with an emphasis on nitrate. Report 2004-5144. US Geological Survey, Tallahassee, FL

    Google Scholar 

  • Postma D, Boesen C (1991) Nitrate reduction in an unconfined sandy aquifer: water chemistry, reduction processes, and geochemical modeling. Water Resour Res 27(8):2027–2045

    Article  Google Scholar 

  • Prommer H, Barry DA, Zheng C (2003) MODFLOW/MT3DMS-based reactive multicomponent transport modeling. Ground Water 41(2):247–256

    Article  Google Scholar 

  • Ravbar N, Goldscheider N (2009) Comparative application of four methods of groundwater vulnerability mapping in Slovene karst catchment. Hydrogeol J 17:725–733. doi:10.1007/s10040-008-0368-0

    Article  Google Scholar 

  • Refsgaard JC, Thorsen M, Jensen JB et al (1999) Large scale modeling of groundwater contamination from nitrate leaching. J Hydrol 221:117–140

    Article  Google Scholar 

  • Sepúlveda N, Tiedeman CR, O’Reilly AM et al (2012) Groundwater flow and water budget in the surficial and Floridan aquifer systems in east-central Florida. US Geol Surv Sci Invest Rep 2012-5161

  • Shoemaker WB, O’Reilly AM, Sepúlveda N et al (2004) Comparison of estimated areas contributing recharge to selected springs in north-central Florida by using multiple ground-water flow models. US Geol Surv Open File Rep 03-448

  • SJRWMD (2011) Groundwater hydrology. SJ2012-1, chapter 4. http://www.sjrwmd.com/technicalreports/pdfs/TP/SJ2012-1_Chapter04.pdf. Accessed 30 August 2015

  • SJRWMD (2015) Groundwater modeling, 3-D steady and transient model. http://sjrwmd.com/groundwaterassessment/models.html. Accessed 21 May 2015

  • Stevenson RJ, Pinowska A, Albertin A et al (2007) Ecological condition of algae and nutrients in Florida springs: the synthesis report. Florida Department of Environmental Protection, Tallahassee, FL

    Google Scholar 

  • Tayfur G, Tanji KK, Baba A (2010) Two-dimensional finite elements model for boron management in agroforestry sites. Environ Monit Assess 160:501–512. doi:10.1007/s10661-008-0714-7

    Article  Google Scholar 

  • Toth DJ, Katz BG (2006) Mixing of shallow and deep groundwater as indicated by the chemistry and age of karstic springs. Hydrogeol J 14:827–847. doi:10.1007/s10040-005-0478-x

    Article  Google Scholar 

  • Vecchioli J, Tibbals CH, Duerr AD, Hutchinson CB (1990) Ground-Water recharge in Florida: a pilot study in Okaloosa, Pasco, and Volusia counties. US Geol Surv Open File Rep 90-4195

  • Verstraeten IM, Fetterman MT, Meyer GS et al (2005) Use of tracers and isotopes to evaluate vulnerability of water in domestic wells to septic waste. Groundwater Monit Rem 25(2):107–117

    Article  Google Scholar 

  • Weast RC (ed) (1985) CRC handbook of chemistry and physics, 69th edn. CRC, Boca Raton, FL, pp. B-77–B-129

  • Widory D, Petelet-Giraud E, Négrel P, Ladouche B (2005) Tracking the sources of nitrate in groundwater using coupled nitrogen and boron isotopes: a synthesis. Environ Sci Technol 39(2):539–548

    Article  Google Scholar 

  • Xu Z, Hu B, Davis H, Jianhua C (2015) Simulating long-term nitrate-N contamination processes in the Woodville Karst Plain using CFPv2 with UMT3D. J Hydrol 524:72–88

    Article  Google Scholar 

  • Yeh GT, Tripathi VS (1989) A critical evaluation of recent developments in hydrogeochemical transport models of reactive multichemical components. Water Resour Res 25(1):93–108

    Article  Google Scholar 

  • Zheng C, Wang P (1999) MT3DMS: a modular three-dimensional multispecies model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems. Documentation and user’s guide, Contract report SERDP-99-1. US Army Engineer Research and Development Center, Vicksburg, MS

    Google Scholar 

Download references

Acknowledgements

This project was supported, in part, by the UCF Research Foundation’s Jones Edmunds Fund (16208148) and the University of Central Florida’s (UCF’s) Environmental Systems Engineering Institute (16200303). Any opinions, findings, and conclusions expressed in this material are those of the authors and do not necessarily reflect the view of UCF (Orlando, FL), its Research Foundation or Jones Edmunds and Associates, Inc. (Gainesville, FL). The authors are thankful for these funding sources. We also thank the editor and reviewers for their comments and suggestions of improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingbao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reed, E.M., Wang, D. & Duranceau, S.J. Modeling anthropogenic boron in groundwater flow and discharge at Volusia Blue Spring (Florida, USA). Hydrogeol J 25, 91–101 (2017). https://doi.org/10.1007/s10040-016-1461-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-016-1461-4

Keywords

Navigation