Skip to main content
Log in

Contribution of time-related environmental tracing combined with tracer tests for characterization of a groundwater conceptual model: a case study at the Séchilienne landslide, western Alps (France)

Contribution du traçage environnemental lié au temps combiné avec des essais de traçage pour la caractérisation d’un modèle conceptuel de l’eau souterraine: une étude de cas au glissement de Séchilienne, Alpes occidentales (France)

Contribución al seguimiento ambiental en relación al tiempo combinado con pruebas de trazadores para la caracterización de un modelo conceptual de las aguas subterráneas: un estudio de caso en el deslizamiento de tierra en Séchilienne, Alpes occidentales (Francia)

与时间相关的环境示踪与示踪实验对描述地下水概念模型的贡献:(法国)阿尔卑斯山脉西部Séchilienne滑坡点的实例研究

Contribuição dos traçadores ambientais relacionados ao tempo combinados a testes com traçadores para a caracterização de modelo conceitual de água subterrânea: estudo de caso no deslizamento de Séchilienne, oeste alpino (França)

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Groundwater-level rise plays an important role in the activation or reactivation of deep-seated landslides and so hydromechanical studies require a good knowledge of groundwater flows. Anisotropic and heterogeneous media combined with landslide deformation make classical hydrogeological investigations difficult. Hydrogeological investigations have recently focused on indirect hydrochemistry methods. This study aims at determining the groundwater conceptual model of the Séchilienne landslide and its hosting massif in the western Alps (France). The hydrogeological investigation is streamlined by combining three approaches: a one-time multi-tracer test survey during high-flow periods, a seasonal monitoring of the water stable-isotope content and electrical conductivity, and a hydrochemical survey during low-flow periods. The complexity of the hydrogeological setting of the Séchilienne massif leads to development of an original method to estimate the elevations of the spring recharge areas, based on topographical analyses and water stable-isotope contents of springs and precipitation. This study shows that the massif supporting the Séchilienne landslide is characterized by a dual-permeability behaviour typical of fractured-rock aquifers where conductive fractures play a major role in the drainage. There is a permeability contrast between the unstable zone and the intact rock mass supporting the landslide. This contrast leads to the definition of a shallow perched aquifer in the unstable zone and a deep aquifer in the intact massif hosting the landslide. The perched aquifer in the landslide is temporary, mainly discontinuous, and its extent and connectivity fluctuate according to the seasonal recharge.

Résumé

L’élévation du niveau de l’eau souterraine joue un rôle important dans l’activation ou la réactivation des glissements de terrain profonds et ainsi des études hydromécaniques nécessitent une bonne connaissance des écoulements d’eaux souterraines. Les milieux anisotropes et hétérogènes combinés à une déformation des glissements de terrain rendent les études hydrogéologiques classiques difficiles. Des études hydrogéologiques ont récemment mis l’accent sur les méthodes hydrochimiques indirectes. Cette étude vise à déterminer le modèle conceptuel hydrogéologique du glissement de terrain de la Séchilienne et son massif dans les Alpes occidentales (France). L’étude hydrogéologique est rationalisée en combinant trois approches: une campagne unique d’essais de traçage multi-traceur au cours des périodes de hautes eaux, un suivi saisonnier de la teneur en isotope stable de l’eau et de la conductivité électrique, et une campagne hydrochimique au cours des périodes de bases eaux. La complexité du contexte hydrogéologique du massif de la Séchilienne mène à développer une méthode originale pour estimer les altitudes des zones de recharge des sources, basée sur des analyses topographiques et sur la teneur des isotopes stables de l’eau des sources et des précipitations. Cette étude montre que le massif siège du glissement de terrain de la Séchilienne est caractérisé par comportement à double perméabilité typique des aquifères fissurés où les fractures conductrices jouent un rôle majeur dans le drainage. Il y a un contraste de conductivité hydraulique entre la zone instable et la masse rocheuse intacte sous-jacent du glissement de terrain. Ce contraste conduit à la définition d’un aquifère perché peu profond dans la zone instable et un aquifère profond dans le massif intact siège du glissement de terrain. L’aquifère perché au sein du glissement de terrain est temporaire, essentiellement discontinu, et son extension et la connectivité fluctuent en fonction de la recharge saisonnière.

Resumen

El ascenso del nivel de agua subterránea juega un papel importante en la activación o reactivación de deslizamientos de tierra profundos y por lo tanto los estudios hidromecánicos requieren de un buen conocimiento de los flujos de agua subterránea. Los medios anisotrópicos y heterogéneos asociados a la deformación por el deslizamiento de tierra hacen dificultosas las investigaciones hidrogeológicas clásicas. Las investigaciones hidrogeológicas recientemente se han centrado en métodos hidroquímicos indirectos. Este estudio tiene como objetivo determinar el modelo conceptual del agua subterránea en el deslizamiento de tierra en Séchilienne y en el macizo hospedante en los Alpes occidentales (Francia). La investigación hidrogeológica se hace más eficiente mediante la combinación de tres enfoques: una relevamiento de pruebas de multitrazadores por única vez durante los períodos de alto flujo, un monitoreo estacional del contenido de isótopos estables y de la conductividad eléctrica en el agua, y un relevamiento hidroquímico durante los períodos de bajo flujo. La complejidad del entorno hidrogeológico del macizo de Séchilienne conduce al desarrollo de un método original para calcular las elevaciones de las áreas de recarga de los manantiales, basada en análisis topográficos y contenidos de isótopos estable del agua de los manantiales y de la precipitación. Este estudio muestra que el macizo hospedante del deslizamiento de tierra de Séchilienne se caracteriza por una doble permeabilidad, comportamiento típico de los acuíferos en rocas fracturadas, donde los conductos de las fracturas desempeñan un papel importante en el drenaje. Existe un contraste de permeabilidad entre la zona inestable y el macizo de roca intacta donde se apoya el deslizamiento de tierra. Este contraste conduce a la definición de un acuífero superficial colgado en la zona inestable y un acuífero profundo en el macizo de roca intacta que aloja el deslizamiento de tierra. El acuífero colgado en el deslizamiento de tierra es temporario, mayormente discontinuo, y su alcance y conectividad fluctúa de acuerdo a la recarga estacional.

摘要

地下水位上升在深层滑坡的激活或者再激活过程中发挥着重要作用,因此,流体力学研究需要彻底了解地下水水流。各向异性和非均质介质加上滑坡变形使传统的水文地质调查非常困难。最近的水文地质调查主要集中在间接的水文化学方法上。这项研究目的就是确定(法国)阿尔卑斯山脉西部Séchilienne滑坡及其主要地块的地下水概念模型。通过三种方法结合起来使水文地质调查更加合理:高水流期一次性的多示踪剂实验调查,水中稳定同位素含量和电导率季节性监测及低水流期的水化学调查。Séchilienne地块水文地质背景的复杂性致使原来的方法得到进一步开发,根据地形分析和泉水和降水中的稳定同位素含量估算泉补给区的海拔高度。这项研究显示,支撑Séchilienne滑坡的地块呈现出双重渗透性行为特征,这种行为是断裂岩层含水层的典型特征,在这种含水层中,传导断裂在排水中发挥着主要作用。非稳定带和支撑滑坡的完整岩石块之间有渗透性差异。依据这种差异可以区分出非稳定带中的浅的表层含水层和支撑滑坡的完整地块中深层含水层。滑坡中的表层含水层是暂时的、大体上不连续的,其范围和连通性根据季节补给量波动。

Resumo

A elevação do nível da água subterrânea desempenha um papel importante na ativação ou reativação de deslizamentos em profundidade, de modo que estudos hidromecânicos exigem um bom entendimento sobre os fluxos da água subterrânea. A combinação de meios heterogêneos e anisotrópicos com a deformação gerada por deslizamentos dificulta as investigações ambientais convencionais. Recentemente, investigações hidrogeológicas têm focado em métodos hidrogeoquímicos indiretos. O presente estudo visa à determinação do modelo conceitual de águas subterrâneas do deslizamento de Séchilienne e seu maciço hospedeiro no oeste alpino (França). A investigação hidrogeológica é organizada por meio da combinação de três métodos: teste de multi-traçador em único evento durante os períodos de alto fluxo; monitoramento sazonal do conteúdo de isótopos e condutividade elétrica da água; e levantamento hidroquímico durante períodos de baixo fluxo. A complexidade do contexto hidrogeológico do maciço Séchilienne motiva o desenvolvimento de um novo método para estimar as elevações das áreas de recarga das nascentes, baseada na análise topográfica e conteúdo de isótopos estáveis nas águas das nascentes e das chuvas. O presente estudo mostra que o maciço hospedeiro do deslizamento de Séchilienne é caracterizado pelo comportamento de dupla permeabilidade, típico de aquíferos em rocha fraturada onde as fraturas desempenham papel principal na drenagem. Entre a zona instável e a rocha sã do maciço subjacente ao deslizamento há um contraste de permeabilidade. Tal contraste motiva a definição de um aquífero suspenso raso na zona instável e a um aquífero mais profundo na rocha sã do maciço hospedeiro do deslizamento. O aquífero suspenso no deslizamento é temporário, predominantemente descontínuo, e sua extensão e conectividade varia conforme a sazonalidade da recarga.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abellán A, Michoud C, Jaboyedoff M, et al (2015) Velocity Prediction on Time-Variant Landslides Using Moving Response Functions: Application to La Barmasse Rockslide (Valais, Switzerland). In: Lollino G, Giordan D, Crosta GB, et al. (eds) Engineering Geology for Society and Territory - vol 2. Springer International Publishing, pp 323–327

  • Agliardi F, Crosta G, Zanchi A (2001) Structural constraints on deep-seated slope deformation kinematics. Eng Geol 59:83–102. doi:10.1016/S0013-7952(00)00066-1

    Article  Google Scholar 

  • Alfonsi P (1997) Relation entre les paramètres hydrologiques et la vitesse dans les glissements de terrains. Exemples de La Clapière et de Séchilienne. Rev Fr Géotech 79:3–12

  • Atteia O (1994) Major and trace elements in precipitation on western Switzerland. Atmos Environ 28:3617–3624. doi:10.1016/1352-2310(94)00193-O

    Article  Google Scholar 

  • Barféty J-C, Bordet P, Carme J, et al. (1972) Notice et carte géologique de la France au 1/50000, feuille de Vizille numéro 797 [Explanatory note and geological map of France at 1/50000, Vizille sheet number 797]. Bureau de recherches géologiques et minières, Orléans, France

  • Barla G, Chiriotti E (1995) Insights into the behaviour of the large deep-seated gravitational slope deformation of Rosone, in the Piemonte Region (Italy). Proc. 44th Geomech. Colloquim. Austrian Soc. for Geomechanics, Salzburg, Austria, pp 425–432

  • Belle P, Aunay B, Bernardie S et al (2014) The application of an innovative inverse model for understanding and predicting landslide movements (Salazie cirque landslides, Reunion Island). Landslides 11:343–355. doi:10.1007/s10346-013-0393-5

    Article  Google Scholar 

  • Bernardie S, Desramaut N, Malet J-P et al (2014) Prediction of changes in landslide rates induced by rainfall. Landslides 12(3):1–14. doi: 10.1007/s10346-014-0495-8

  • Binet S (2006) L’hydrochimie, marqueur de l’évolution à long terme des versants montagneux fracturés vers de grands mouvements de terrain: application à plusieurs échelles sur la haute vallée de la Tinée (Mercantour, France) et sur le versant de Rosone (Gran Paradiso, Italie) [Hydrochemistry, a marker of long-term evolution of unstable fractured slopes, towards large moving rock masses: application at multiple scales on the upper valley of the Tinée (Mercantour, France) and on the slope of (Gran Paradiso, Italy]. PhD Thesis, Université de Franche-Comté, France

  • Binet S, Guglielmi Y, Bertrand C, Mudry J (2007a) Unstable rock slope hydrogeology: insights from the large-scale study of western Argentera-Mercantour hillslopes (south-east France). Bull Soc Géol Fr 178:159–168. doi:10.2113/gssgfbull.178.2.159

    Article  Google Scholar 

  • Binet S, Jomard H, Lebourg T et al (2007b) Experimental analysis of groundwater flow through a landslide slip surface using natural and artificial water chemical tracers. Hydrol Process 21:3463–3472. doi:10.1002/hyp.6579

    Article  Google Scholar 

  • Binet S, Spadini L, Bertrand C et al (2009) Variability of the groundwater sulfate concentration in fractured rock slopes: a tool to identify active unstable areas. Hydrol Earth Syst Sci 13:2315–2327. doi:10.5194/hess-13-2315-2009

    Article  Google Scholar 

  • Bogaard T, Guglielmi Y, Marc V et al (2007) Hydrogeochemistry in landslide research: a review. Bull Soc Géol Fr 178:113–126. doi:10.2113/gssgfbull.178.2.113

    Article  Google Scholar 

  • Bonnard C (1988) Landslides/Glissements De Terrain: Proceedings of the 5th International Symposium, Lausanne, 10–15 July 1988, 1st edn. Taylor and Francis, Rotterdam, The Netherlands

    Google Scholar 

  • Bonzanigo L, Eberhardt E, Loew S (2007) Long-term investigation of a deep-seated creeping landslide in crystalline rock, part I: geological and hydromechanical factors controlling the Campo Vallemaggia landslide. Can Geotech J 44:1157–1180. doi:10.1139/T07-043

    Article  Google Scholar 

  • Calmels D, Gaillardet J, Brenot A, France-Lanord C (2007) Sustained sulfide oxidation by physical erosion processes in the Mackenzie River basin: climatic perspectives. Geology 35:1003–1006. doi:10.1130/G24132A.1

    Article  Google Scholar 

  • Cappa F, Guglielmi Y, Soukatchoff VM et al (2004) Hydromechanical modeling of a large moving rock slope inferred from slope levelling coupled to spring long-term hydrochemical monitoring: example of the La Clapière landslide (Southern Alps, France). J Hydrol 291:67–90. doi:10.1016/j.jhydrol.2003.12.013

    Article  Google Scholar 

  • Cappa F, Guglielmi Y, Rutqvist J et al (2006) Hydromechanical modelling of pulse tests that measure fluid pressure and fracture normal displacement at the Coaraze Laboratory site, France. Int J Rock Mech Min Sci 43:1062–1082. doi:10.1016/j.ijrmms.2006.03.006

    Article  Google Scholar 

  • Cappa F, Guglielmi Y, Viseur S, Garambois S (2014) Deep fluids can facilitate rupture of slow-moving giant landslides as a result of stress transfer and frictional weakening. Geophys Res Lett 41:61–66. doi:10.1002/2013GL058566

    Article  Google Scholar 

  • Cervi F, Corsini A, Doveri M, et al (2015) Characterizing the Recharge of Fractured Aquifers: A Case Study in a Flysch Rock Mass of the Northern Apennines (Italy). In: Lollino G, Arattano M, Rinaldi M, et al. (eds) Engineering Geology for Society and Territory - vol 3. Springer International Publishing, pp 563–567

  • Cervi F, Ronchetti F, Martinelli G et al (2012) Origin and assessment of deep groundwater inflow in the Ca’ Lita landslide using hydrochemistry and in situ monitoring. Hydrol Earth Syst Sci 16:4205–4221. doi:10.5194/hess-16-4205-2012

    Article  Google Scholar 

  • Chanut M-A, Vallet A, Dubois L, Duranthon J-P (2013) Mouvement de versant de Séchilienne: relations entre déplacements de surface et précipitations—analyse statistique [Séchilienne landslide: relationships between surface displacements and precipitations—statistical analysis]. Journées Aléa Gravitaire, Grenoble, September 2013

  • Charlier J-B, Bertrand C, Binet S et al (2010) Use of continuous measurements of dissolved organic matter fluorescence in groundwater to characterize fast infiltration through an unstable fractured hillslope (Valabres rockfall, French Alps). Hydrogeol J 18:1963–1969. doi:10.1007/s10040-010-0670-5

    Article  Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. CRC, Boca Raton, LA

    Google Scholar 

  • Clauser C (1992) Permeability of crystalline rocks. EOS Trans Am Geophys Union 73:233–238. doi:10.1029/91EO00190

    Article  Google Scholar 

  • Corominas J, Moya J, Ledesma A et al (2005) Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees, Spain). Landslides 2:83–96. doi:10.1007/s10346-005-0049-1

    Article  Google Scholar 

  • Dongarrà G, Manno E, Sabatino G, Varrica D (2009) Geochemical characteristics of waters in mineralised area of Peloritani Mountains (Sicily, Italy). Appl Geochem 24:900–914. doi:10.1016/j.apgeochem.2009.02.002

    Article  Google Scholar 

  • Durville J-L, Kasperki J, Duranthon J-P (2009) The Séchilienne landslide: monitoring and kinematics. First Ital. Workshop on Landslides, Naples, Italy, June 2009, pp 174–180

  • Gaillardet J, Dupré B, Louvat P, Allègre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159:3–30. doi:10.1016/S0009-2541(99)00031-5

    Article  Google Scholar 

  • Gat JR (1996) Oxygen and hydrogen isotopes in the hydrologic cycle. Annu Rev Earth Planet Sci 24:225–262. doi:10.1146/annurev.earth.24.1.225

    Article  Google Scholar 

  • Guglielmi Y, Vengeon JM, Bertrand C et al (2002) Hydrogeochemistry: an investigation tool to evaluate infiltration into large moving rock masses (case study of La Clapière and Séchilienne alpine landslides). Bull Eng Geol Environ 61:311–324

    Article  Google Scholar 

  • Guglielmi Y, Cappa F, Binet S (2005) Coupling between hydrogeology and deformation of mountainous rock slopes: insights from La Clapière area (southern Alps, France). C R Geosci 337:1154–1163. doi:10.1016/j.crte.2005.04.016

    Article  Google Scholar 

  • Helmstetter A, Garambois S (2010) Seismic monitoring of Séchilienne rockslide (French Alps): analysis of seismic signals and their correlation with rainfalls. J Geophys Res 115, F03016. doi:10.1029/2009JF001532

    Google Scholar 

  • Hilley GE, Chamberlain CP, Moon S et al (2010) Competition between erosion and reaction kinetics in controlling silicate-weathering rates. Earth Planet Sci Lett 293:191–199. doi:10.1016/j.epsl.2010.01.008

    Article  Google Scholar 

  • Hong Y, Hiura H, Shino K et al (2005) The influence of intense rainfall on the activity of large-scale crystalline schist landslides in Shikoku Island, Japan. Landslides 2:97–105. doi:10.1007/s10346-004-0043-z

    Article  Google Scholar 

  • Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36:1897–1910. doi:10.1029/2000WR900090

    Article  Google Scholar 

  • Kosugi K, Fujimoto M, Katsura S et al (2011) Localized bedrock aquifer distribution explains discharge from a headwater catchment. Water Resour Res 47, W07530. doi:10.1029/2010WR009884

    Google Scholar 

  • Le Roux O, Jongmans D, Kasperski J et al (2011) Deep geophysical investigation of the large Séchilienne landslide (western Alps, France) and calibration with geological data. Eng Geol 120:18–31. doi:10.1016/j.enggeo.2011.03.004

    Article  Google Scholar 

  • Lebrouc V, Schwartz S, Baillet L et al (2013) Modeling permafrost extension in a rock slope since the Last Glacial Maximum: application to the large Séchilienne landslide (French Alps). Geomorphology 198:189–200. doi:10.1016/j.geomorph.2013.06.001

    Article  Google Scholar 

  • Leibundgut C, Maloszewski P, Külls C (2011) Tracers in hydrology. Wiley, New York

    Book  Google Scholar 

  • Lin P-Y, Tsai LL-Y (2012) A hydrochemical study of Hungtsaiping landslide area, Nantou, Taiwan. Environ Earth Sci 67:1045–1060. doi:10.1007/s12665-012-1564-8

    Article  Google Scholar 

  • Lis G, Wassenaar LI, Hendry MJ (2008) High-precision laser spectroscopy D/H and 18O/16O measurements of microliter natural water samples. Anal Chem 80:287–293. doi:10.1021/ac701716q

    Article  Google Scholar 

  • Maréchal J-C (1998) Les circulations d’eau dans les massifs cristallins alpins et leurs relations avec les ouvrages souterrains [Groundwater flows in Alpine crystalline massifs and their relationships with man-made excavation]. PhD Thesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

  • Maréchal J-C, Etcheverry D (2003) The use of 3H and δ18O tracers to characterize water inflows in Alpine tunnels. Appl Geochem 18:339–351

    Article  Google Scholar 

  • Martelloni G, Segoni S, Fanti R, Catani F (2012) Rainfall thresholds for the forecasting of landslide occurrence at regional scale. Landslides 9:485–495. doi:10.1007/s10346-011-0308-2

  • Meric O, Garambois S, Jongmans D et al (2005) Application of geophysical methods for the investigation of the large gravitational mass movement of Séchilienne, France. Can Geotech J 42:1105–1115. doi:10.1139/t05-034

    Article  Google Scholar 

  • Michoud C, Bazin S, Blikra LH et al (2013) Experiences from site-specific landslide early warning systems. Nat Hazards Earth Syst Sci 13:2659–2673. doi:10.5194/nhess-13-2659-2013

    Article  Google Scholar 

  • Padilla C, Onda Y, Iida T et al (2014) Characterization of the groundwater response to rainfall on a hillslope with fractured bedrock by creep deformation and its implication for the generation of deep-seated landslides on Mt. Wanitsuka, Kyushu Island. Geomorphology 204:444–458. doi:10.1016/j.geomorph.2013.08.024

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resources Investigations Report 99-4259

  • Penna D, Stenni B, Šanda M et al (2010) On the reproducibility and repeatability of laser absorption spectroscopy measurements for δ2H and δ18O isotopic analysis. Hydrol Earth Syst Sci 14:1551–1566. doi:10.5194/hess-14-1551-2010

    Article  Google Scholar 

  • Pili É, Perrier F, Richon P (2004) Dual porosity mechanism for transient groundwater and gas anomalies induced by external forcing. Earth Planet Sci Lett 227:473–480. doi:10.1016/j.epsl.2004.07.043

    Article  Google Scholar 

  • Rochet L, Giraud A, Antoine P, Évrard H (1994) La déformation du versant sud du Mont-Sec dans le secteur des Ruines de Séchilienne (Isère) [The deformation of the Mont Sec slope in the Ruines de Séchilienne area (Isère)]. Bull Int Assoc Eng Geol 50:75–87. doi:10.1007/BF02594959

    Article  Google Scholar 

  • Ronchetti F, Borgatti L, Cervi F et al (2009) Groundwater processes in a complex landslide, northern Apennines, Italy. Nat Hazards Earth Syst Sci 9:895–904. doi:10.5194/nhess-9-895-2009

    Article  Google Scholar 

  • Rutqvist J, Stephansson O (2003) The role of hydromechanical coupling in fractured rock engineering. Hydrogeol J 11:7–40. doi:10.1007/s10040-002-0241-5

    Article  Google Scholar 

  • Sun J, Liu Q, Li J, An Y (2009) Effects of rainfall infiltration on deep slope failure. Sci China Ser G Phys Mech Astron 52:108–114. doi:10.1007/s11433-009-0004-6

    Article  Google Scholar 

  • Tullen P (2002) Méthodes d’analyse du fonctionnement hydrogéologique des versants instables [Methods of analyses of the hydrogeological functioning of unstable slopes]. PhD Thesis, Ecole Polytechnique Fédérale de Lausanne, Switzerland

  • Vallet A, Bertrand C, Fabbri O, Mudry J (2015) An efficient workflow to accurately compute groundwater recharge for the study of rainfall-triggered deep-seated landslides, application to the Séchilienne unstable slope (western Alps). Hydrol Earth Syst Sci 19:427–449. doi:10.5194/hess-19-427-2015

    Article  Google Scholar 

  • Van Asch TWJ, Buma J, van Beek LP (1999) A view on some hydrological triggering systems in landslides. Geomorphology 30:25–32. doi:10.1016/S0169-555X(99)00042-2

    Article  Google Scholar 

  • Vengeon JM (1998) Déformation et rupture des versants en terrain métamorphique anisotrope: apport de l’étude des Ruines de Séchilienne [Deformation and rupture of slopes in anisotropic metamorphic rocks: contribution of the study of the Ruines de Séchilienne]. PhD Thesis, Université Joseph Fourier, France

Download references

Acknowledgements

This research was funded by SLAMS (Séchilienne Land movement: Multidisciplinary Studies), the program of the Agence Nationale de la Recherche. The meteorological and displacement data were supplied by CEREMA Lyon. The authors gratefully acknowledge the support of Jean-Pierre Duranthon and Marie-Aurélie Chanut (CEREMA Lyon). The authors are also very grateful to Christophe Loup (UMR Chrono-Environnement) for the chemical analyses. The implementation of the monitoring network would not have been possible without the cooperation of Mrs. and Mr. Aymoz, Patrick Boyer from the Office National des Forêts, and Gérard Cret, mayor of Séchilienne. The manuscript was improved by detailed and constructive comments from the editor Jiu Jimmy Jiao, the associate editor Jürgen Mahlknecht, and reviewers Stéphane Binet, Federico Cervi, Boris Matti and one anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Vallet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vallet, A., Bertrand, C., Mudry, J. et al. Contribution of time-related environmental tracing combined with tracer tests for characterization of a groundwater conceptual model: a case study at the Séchilienne landslide, western Alps (France). Hydrogeol J 23, 1761–1779 (2015). https://doi.org/10.1007/s10040-015-1298-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-015-1298-2

Keywords

Navigation