Skip to main content

Advertisement

Log in

Tracing recharge to aquifers beneath an Asian megacity with Cl/Br and stable isotopes: the example of Dhaka, Bangladesh

Traçage de la recharge des aquifères situés sous une mégapole asiatique à l’aide de Cl/Br et des isotopes stables: exemple de Dacca, Bengladesh

Seguimiento de la recarga en acuíferos por debajo de una megaciudad asiática con Cl/Br e isotopes estables: el ejemplo de Dhaka, Bangladesh

ক্লোরাইড/ব্রোমাইড অনুপাত ও স্থিতিশীল আইসোটোপ ব্যবহার করে এশিয়ার একটি মেগাসিটির তলদেশের একুইফারগুলোতে ভূগর্ভস্থ পানির রিচার্জ পথের অনুসন্ধানঃ বাংলাদেশের ঢাকা শহরের উদাহরণ

采用Cl/Br和稳定同位素示踪剂追溯亚洲特大城市之下含水层的补给:孟加拉达卡研究实例

Rastreamento da recarga em aquíferos sob uma megacidade asiática usando como traçadores Cl/Br e isótopos estáveis: o exemplo de Dhaka, Bangladesh

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Dhaka, the capital of Bangladesh, is home to a population of 15 million people, whose water supply is 85% drawn from groundwater in aquifers that underlie the city. Values of Cl/Br >500 are common in groundwater beneath western Dhaka in areas <3 km from the river, and in rivers and sewers around and within the city. The study shows that groundwater beneath western Dhaka is strongly influenced by infiltration of effluent from leaking sewers and unsewered sanitation, and by river-bank infiltration from the Turag-Buriganga river system which bounds the western limit of the city. River-bank infiltration from other rivers around Dhaka is minor. Values of Cl/Br and Cl concentrations reveal that 23 % of wells sampled in Dhaka are influenced by saline connate water in amounts up to 1%. This residual natural salinity compromises the use of electrical conductivity of groundwater as a method for defining pathways of recharge by contaminated surface waters. Concentrations of As, B, Ba, Cd, Cu, F, Ni, NO3, Pb, Sb, Se and U in groundwater samples are less than WHO health-based guideline values for drinking water.

Résumé

Dacca, la capitale du Bengladesh, héberge 15 millions d’habitants, dont l’eau potable provient à 85% d’aquifères situés sous la ville. Des valeurs du rapport ionique Cl/Br >500 sont fréquentes dans l’eau souterraine, sous l’ouest de Dacca, dans des secteurs à moins de 3 km de la rivière, et dans les cours d’eau et égouts de la cité. L’étude montre que l’eau souterraine sous l’ouest de Dacca est fortement influencée par l’infiltration des effluents (fuites des égouts et rejets non collectés) et par des infiltrations à travers les berges de la rivière Turag-Buriganga qui borde la limite ouest de la cité. Les infiltrations à travers les berges des autres rivières autour de Dacca sont moins importantes. Les valeurs du rapport Cl/Br et les concentrations en Cl révèlent que 23% des puits échantillonnés à Dacca sont influencés par de l’eau salée connée dans des proportions jusqu’à 1%. Cette salinité résiduelle naturelle compromet l’usage de la conductivité de l’eau souterraine comme méthode de traçage de la recharge par les eaux contaminées de la surface. Les concentrations en As, B, Ba, Cd, Cu, F, Ni, NO3, Pb, Sb, Se, et U dans les échantillons d’eau souterraine sont inférieures aux directives de l’OMS pour l’eau potable.

Resumen

Dhaka, la capital de Bangladesh, alberga a una población de 15 millones de habitantes, cuyo abastecimiento de agua es en un 85% extraído del agua subterránea de acuíferos que subyacen la ciudad. Los valores de Cl/Br >500 son comunes en el agua subterránea por debajo de Dhaka occidental en áreas distantes a <3 km desde el río, y en los ríos y alcantarillados alrededor y en el interior de la ciudad. El estudio muestra que el agua subterránea por debajo de Dhaka occidental está fuertemente influenciada por la infiltración de efluentes proveniente de pérdidas de alcantarillado y de saneamientos sin alcantarillados, y por infiltración en las márgenes del río del sistema del río Turag-Buriganga que bordea el límite occidental de la ciudad. La infiltración de las márgenes de otros ríos alrededor de Dhaka es menor. Los valores de Cl/Br y concentraciones de cloruro revelan que el 23% de los pozos muestreados en Dhaka está influenciado por agua connata salina en cantidades de hasta 1%. Esta salinidad natural residual compromete el uso de la conductividad eléctrica del agua subterránea como un método para definir trayectorias de recarga por aguas superficiales contaminadas. Las concentraciones de As, B, Ba, Cd, Cu, F, Ni, NO3, Pb, Sb, Se, y U en las muestras de agua subterráneas son menores que los valores guías de WHO de la salud para el agua potable.

সারসংক্ষেপ

দেড় কোটি মানুষের বসতি বাংলাদেশের রাজধানী ঢাকা শহরের পানির চাহিদার শতকরা ৮৫ ভাগই মেটানো হয় ভূগর্ভস্থ পানি হতে- যা তোলা হয় শহরের তলদেশে অবস্থিত একুইফারগুলো থেকে। নদী থেকে ৩ কিলোমিটার দূরত্বসীমার মধ্যে থাকা পশ্চিম ঢাকা’র ভূগর্ভস্থ পানির এবং শহরের ভেতরের ও চারপাশের নর্দমা ও নদীর পানির ক্লোরাইড/ব্রোমাইড অনুপাত সাধারণত ৫০০’র-ও বেশী। এই গবেষণা থেকে এটাই প্রতীয়মান যে, নর্দমা ও অপরিশোধিত পয়ঃনিষ্কাশন ব্যবস্থা থেকে নির্গত বর্জ্যের পরিস্রাবণ, এবং তুরাগ-বুড়িগঙ্গা নদী- যা ঢাকা শহরের পশ্চিম সীমানা চিহ্নিত করে, তার কূল থেকে যে পরিস্রাবণ ঘটে, উভয়ই পশ্চিম ঢাকার নিচের ভূগর্ভস্থ পানিকে প্রবলভাবে প্রভাবিত করে। ঢাকার চারপাশের অন্যান্য নদীর কূলবর্তী পরিস্রাবণের প্রভাব গৌণ। ক্লোরাইড/ব্রোমাইড অনুপাত ও ক্লোরাইডের মাত্রা থেকে বোঝা যায় যে, ঢাকা থেকে যে সমস্ত নলকূপের উপাত্ত সংগ্রহ করা হয়েছে, তার শতকরা ২৩ ভাগ নলকূপে সহজাত-লবণাক্ত পানির প্রভাব বিদ্যমান যা শতকরা প্রায় ১ ভাগ পর্যন্ত। এই প্রাকৃতিক লবণাক্ততার অবশেষ ভূগর্ভস্থ পানির বৈদ্যুতিক পরিবাহিতা প্রয়োগ করে ভূ-পৃষ্ঠের দূষিত পানির দ্বারা ভূগর্ভস্থ পানির রিচার্জ হওয়ার পথ নিরুপণ করার পদ্ধতিকে প্রশ্নবিদ্ধ করে। ভূগর্ভস্থ পানির নমুনা সমূহে প্রাপ্ত আর্সেনিক, বোরন, বেরিয়াম, ক্যাডমিয়াম, কপার, ফ্লোরাইড, নিকেল, নাইট্রেট, সীসা, অ্যান্টিমনি, সেলেনিয়াম ও ইউরেনিয়ামের মাত্রা বিশ্ব স্বাস্থ্য সংস্থা কর্তৃক নির্দেশিত সহনীয় মাত্রার চেয়ে কম।

摘要

达卡是孟加拉的首都,人口1500万,85%的供水抽自城市之下含水层中的地下水。在达卡西部距离河流不到3公里的区域内地下水中及城市周围和城市内的河流和排水渠中,Cl/Br 值大于500很常见。研究显示,达卡西部之下的地下水受到排水渠和无沟渠下水道泄漏出的污水入渗及作为城市西部边界的Turag-Buriganga河流系统河岸入渗的严重影响。达卡周围其他河流的河岸入渗量很小。Cl/Br 和 Cl含量值显示,达卡采样井的23%受到含盐量达1%的原生咸水的影响。这个残留的天然含盐量使地下水电导性作为确定污染地表水补给通道的方法无法使用。水样中As、 B、 Ba、 Cd、 Cu、 F、 Ni、 NO3、 Pb、 Sb、 Se和 U的含量比世界卫生组织饮用水指南中规定的数值要小。

Resumo

Dhaka, a capital do Bangladesh, tem uma população de 15 milhões, que têm 85% da água de abastecimento baseada em aquíferos que se encontram sob a cidade. São comuns valores de Cl/Br >500 nas águas subterrâneas sob a parte ocidental de Dhaka em áreas a <3 km do rio, e em rios e coletores de esgoto em redor e dentro da cidade. O estudo mostra que a água subterrânea sob a parte ocidental de Dhaka é fortemente influenciada pela infiltração de efluentes provenientes de perdas a partir de sistemas de esgotos e de estruturas de saneamento não controladas, e pela infiltração de água nos sedimentos de margem do sistema do rio Turag-Buriganga, que constitui a fronteira ocidental da cidade. As infiltrações de margem a partir de outros rios em redor de Dakha são reduzidas. Valores de concentração de Cl/Br e Cl revelam que 23% dos poços amostrados em Dakha são influenciados por águas salobras conatas em quantidades até 1%. A salinidade natural residual compromete o uso da condutividade elétrica da água subterrânea como um método para definir os percursos de recarga por águas superficiais contaminadas. As concentrações de As, B, Ba, Cd, Cu, F, Ni, NO3, Pb, Sb, Se e U em amostras de águas subterrâneas são inferiores aos valores das normas da OMS para água de abastecimento.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmed KM, Hasan MA, Sharif SU, Hossain KS (1998) Effect of urbanisation on groundwater regime, Dhaka City, Bangladesh. J Geol Soc India 52:229–238

    Google Scholar 

  • Ahmed KM, Hasan MK, Burgess WG, Dottridge J, Ravenscroft P, van Wonderen JJ (1999) The Dupi Tila aquifer of Dhaka, Bangladesh: hydraulic and hydrochemical response to intensive exploitation In: Chilton PJ (ed) Groundwater in the urban environment, vol 2: selected city profiles. IAH - International Contributions to Hydrogeology 21, CRC, Boca Raton, FL

  • Ahmed KM, Sultana S, Hasan MA, Bhattacharya P, Hasan MK, Burgess WG, Hoque MA (2011) Groundwater quality of upper and lower Dupi Tila aquifers in the megacity Dhaka, Bangladesh. Proc 7th International Groundwater Quality Conference held in Zurich, Switzerland, 13–18 June 2010, IAHS Publ 342, IAHS, Wallingford, UK, pp 71–74

  • Alcalá FJ, Custodio E (2008) Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal. J Hydrol 359:189–207

    Article  Google Scholar 

  • Bourg ACM, Bertin C (1993) Biogeochemical processes during the infiltration of river water into an alluvial aquifer. Environ Sci Technol 27:661–666. doi:10.1021/es00041a009

    Article  Google Scholar 

  • CDMP (2009) Engineering geological mapping of Dhaka, Chittagong and Sylhet city corporation area of Bangladesh Comprehensive Disaster Management Programme (CDMP), Ministry of Food and Disaster Management. Government of Bangladesh, Dhaka, 124 pp

    Google Scholar 

  • Darling WG, Burgess WG, Hasan MK (2002) Isotopic evidence for induced river recharge to the Dupi Tila aquifer in the Dhaka urban area, Bangladesh. In: The application of isotope techniques to the assessment of aquifer systems in major urban areas. IAEA-TECDOC 1298, IAEA, Vienna, pp 95–107

  • Davis SN, Whittemore DO, Fabryka-Martin J (1998) Uses of chloride/bromide ratios in studies of potable water. Ground Water 36:338–350. doi:10.1111/j.1745-6584.1998.tb01099.x

    Article  Google Scholar 

  • Davis SN, Fabryka-Martin JT, Wolfsberg LE (2004) Variations of bromide in potable ground water in the United States. Ground Water 42:902–909. doi:10.1111/j.1745-6584.2004.t01-8-.x

    Article  Google Scholar 

  • DPHE (1999) Groundwater studies for arsenic contamination in Bangladesh: phase I—rapid investigation. DPHE of Government of Bangladesh, Dhaka

  • DWASA, IWM (2008) Resource assessment and monitoring of water supply sources for Dhaka city. Dhaka Water Supply and Sewerage Authority (DWASA), Dhaka

  • DWASA (2013) Annual report 2012–2013. Dhaka Water Supply and Sewerage Authority (DWASA), Dhaka, 86 pp

  • Falkenmark M, Widstrand C (1992) Population and water resources: a delicate balance. Popul Bull 47:1–36

    Google Scholar 

  • Farnsworth CE, Hering JG (2011) Inorganic geochemistry and redox dynamics in bank filtration settings. Environ Sci Technol 45:5079–5087. doi:10.1021/es2001612

    Article  Google Scholar 

  • Foster S, Hirata R, Howard K (2011) Groundwater use in developing cities: policy issues arising from current trends. Hydrogeol J 19:271–274. doi:10.1007/s10040-010-0681-2

    Article  Google Scholar 

  • Galloway D, Burbey T (2011) Regional land subsidence accompanying groundwater extraction. Hydrogeol J 19:1459–1486. doi:10.1007/s10040-011-0775-5

    Article  Google Scholar 

  • Gunten H, Kull T (1986) Infiltration of inorganic compounds from the Glatt River, Switzerland, into a groundwater aquifer. Water Air Soil Pollut 29:333–346. doi:10.1007/bf00158764

    Article  Google Scholar 

  • Haq KA (2006) Water management in Dhaka. Intl J Water Resour Dev 22:291–311. doi:10.1080/07900620600677810

    Article  Google Scholar 

  • Haque SJ (2006) Hydrogelogical characterization of the lower Dupi Tila aquifer of Dhaka city. MSc Report, University of Dhaka, Bangladesh

    Google Scholar 

  • Harrington G, Cook P (2011) Mechanical loading and unloading of confined aquifers: implications for the assessment of long-term trends in potentiometric levels CSIRO. Water for a Healthy Country Flagship, Canberra, Australia, 13 pp

  • Hasan MK (1999) The vulnerability of the Dupi Tila Aquifer, Dhaka. PhD Thesis, University College London, Bangladesh

    Google Scholar 

  • Hasan MK, Ahmed KM, Burgess WG, Dottridge J (1998) Asaduzzaman M (1998) Limits on the sustainable development of the Dupi Tila aquifer, Bangladesh. In: Wheater H, Kirby C (eds) Hydrology in a changing environment: proceedings of the British Hydrological Society International Conference. Exeter, UK, July 1998, pp 185–194

  • Hoque MA (2004) Hydrostratigraphy and aquifer piezometry of Dhaka City. PGDip Report, Bangladesh University of Engineering & Technology, Bangladesh

    Google Scholar 

  • Hoque MA, Burgess WG (2012) 14C dating of deep groundwater in the Bengal Aquifer System, Bangladesh: implications for aquifer anisotropy, recharge sources and sustainability. J Hydrol 444–445:209–220

    Article  Google Scholar 

  • Hoque M, Salahuddin MM, Asaduzzaman ATM, Chowdhury SQ, Nasreen N, Haq ATMF (1994) Neotectonic activity in the metropolis Dhaka, the capital of Bangladesh. Dhaka University J Sci 42:211–219

    Google Scholar 

  • Hoque M, Hasan MK, Ravenscroft P (2003) Investigation of groundwater salinity and gas problems in southeast Bangladesh. In: Rahman AA, Ravenscroft P (eds) Groundwater resources and development in Bangladesh: background to the arsenic crisis, agricultural potential and the environment. The University Press, Dhaka, pp 373–390

  • Hoque MA, Hoque MM, Ahmed KM (2007) Declining groundwater level and aquifer dewatering in Dhaka metropolitan area, Bangladesh: causes and quantification. Hydrogeol J 15:1523–1534. doi:10.1007/s10040-007-0226-5

    Article  Google Scholar 

  • Hosono T, Nakano T, Shimizu Y, Onodera S, Taniguchi M (2011) Hydrogeological constraints on nitrate and arsenic contamination in Asian metropolitan groundwater. Hydrol Process 25:2742–2754

    Article  Google Scholar 

  • Huq S, Alam M (2003) Flood management and vulnerability of Dhaka City. In: Kreimer A, Arnold M, Carlin A (eds) Building safer cities: the future of disaster risk. Disaster Risk Management Series, World Bank, Washington, DC, pp 121–135

    Google Scholar 

  • ICCIDD (2013) FAQs about iodine nutrition, International Council for the Control of Iodine Deficiency Disorders (ICCIDD). http://www.iccidd.org/p142000355.html#p4. Cited 30 July 2013

  • IWM (2006) Borehole geophysical investigations for hydrostratigraphy and aquifer delineation in Dhaka City and Singair Upazila. Institute of Water Modeling (IWM). Dhaka, Bangladesh

    Google Scholar 

  • Jakariya M, Vahter M, Rahman M, Wahed MA, Hore SK, Bhattacharya P, Jacks G, Persson LÃ (2007) Screening of arsenic in tubewell water with field test kits: evaluation of the method from public health perspective. Sci Total Environ 379:167–175

    Article  Google Scholar 

  • Jian J, Webster PJ, Hoyos CD (2009) Large-scale controls on Ganges and Brahmaputra river discharge on intraseasonal and seasonal time-scales. Q J R Meteorol Soc 135:353–370. doi:10.1002/qj.384

    Article  Google Scholar 

  • Kagabu M, Shimada J, Delinom R, Tsujimura M, Taniguchi M (2011) Groundwater flow system under a rapidly urbanizing coastal city as determined by hydrogeochemistry. J Asian Earth Sci 40:226–239

    Article  Google Scholar 

  • Katz BG, Eberts SM, Kauffman LJ (2011) Using Cl/Br ratios and other indicators to assess potential impacts on groundwater quality from septic systems: a review and examples from principal aquifers in the United States. J Hydrol 397:151–166

    Article  Google Scholar 

  • Khandoker RA (1987) Origin of elevated Barind-Madhupur areas, Bengal basin: result of neotectonic activities. Bangladesh J Geol 6:1–9

    Google Scholar 

  • Lundqvist J, Appasamy P, Nelliyat P (2003) Dimensions and approaches for Third World city water security. Philos Trans R Soc Lond B Biol Sci 358:1985–1996

    Article  Google Scholar 

  • Majumder R, Halim M, Saha B, Ikawa R, Nakamura T, Kagabu M, Shimada J (2011) Groundwater flow system in Bengal Delta, Bangladesh revealed by environmental isotopes. Environ Earth Sci 64:1343–1352. doi:10.1007/s12665-011-0959-2

    Article  Google Scholar 

  • Mazor E, Mero F (1969) Geochemical tracing of mineral and fresh water sources in the Lake Tiberias Basin, Israel. J Hydrol 7: 276-317. doi:10.1016/0022-1694(69)90106-1

  • McArthur JM, Banerjee DM, Hudson-Edwards KA, Mishra R, Purohit R, Ravenscroft P, Cronin A, Howarth RJ, Chatterjee A, Talkdar T, Lowry D, Houghton S, Chadha DK (2004) Natural organic matter in sedimentary basins and its relation to arsenic in anoxic groundwater: the example of West Bengal and its worldwide implications. Appl Geochem 19:1255–1293

    Article  Google Scholar 

  • McArthur JM, Sikdar PK, Hoque MA, Ghosal U (2012) Waste-water impacts on groundwater: Cl/Br ratios and implications for arsenic pollution of groundwater in the Bengal Basin and Red River Basin, Vietnam. Sci Total Environ 437:390–402

    Article  Google Scholar 

  • McDonald R, Douglas I, Revenga C, Hale R, Grimm N, Gronwall J, Fekete B (2011) Global urban growth and the geography of water availability, quality, and delivery. AMBIO 40:437–446. doi:10.1007/s13280-011-0152-6

    Article  Google Scholar 

  • Morgan JP, McIntire WG (1959) Quaternary geology of the Bengal Basin, East Pakistan and India. Geol Soc Am Bull 70:319–342

    Article  Google Scholar 

  • Morris BL, Seddique AA, Ahmed KM (2003) Response of the Dupi Tila aquifer to intensive pumping in Dhaka, Bangladesh. Hydrogeol J 11:496–503

    Article  Google Scholar 

  • Nissenbaum A, Magaritz M (1991) Bromine-rich groundwater in the Hula Valley, Israel. Naturwissenschaften 78:217–218. doi:10.1007/bf01136083

    Article  Google Scholar 

  • Panno SV, Hackley KC, Hwang HH, Greenberg SE, Krapac IG, Landsberger S, O'Kelly DJ (2006) Characterization and Identification of Na–Cl sources in ground water. Ground Water 44:176–187. doi:10.1111/j.1745-6584.2005.00127.x

    Article  Google Scholar 

  • Rahman AM (2011) Towards an integrated pollution management approach for the Buriganga River in Bangladesh. PhD Thesis, University of Sydney, Australia

  • Rahman MR, Rana MY (1996) Pollution assimilation capacity of Buriganga River. J Civil Eng (Bangladesh) CE24:85–95

  • Rahman MA, Bakri DA (2010) A study on selected water quality parameters along the River Buriganga, Bangladesh. Iranica J Energy Environ 1:81–92

    Google Scholar 

  • Rahman M, Wiegand B, Badruzzaman ABM, Ptak T (2013) Hydrogeological analysis of the upper Dupi Tila Aquifer, towards the implementation of a managed aquifer-recharge project in Dhaka City, Bangladesh. Hydrogeol J 21:1071–1089. doi:10.1007/s10040-013-0978-z

    Article  Google Scholar 

  • Ravenscroft P, Brammer H, Richards KS (2009) Arsenic pollution: a global synthesis, 1st edn. Wiley-Blackwell, London

    Book  Google Scholar 

  • Schubert J (2002) Hydraulic aspects of riverbank filtration-field studies. J Hydrol 266: 145–161. doi:10.1016/S0022-1694(02)00159-2

  • Sengupta S, Sarkar A (2006) Stable isotope evidence of dual (Arabian Sea and Bay of Bengal) vapour sources in monsoonal precipitation over north India. Earth Planet Sci Lett 250: 511–521. doi:10.1016/j.epsl.2006.08.011

  • Sengupta S, McArthur JM, Sarkar AK, Leng M, Ravenscroft P, Howarth RJ, Banerjee D (2008) Do ponds cause arsenic-pollution of groundwater in the Bengal Basin? An answer from West Bengal. Environ Sci Technol 42:5156–5164. doi:10.1021/es702988m

    Article  Google Scholar 

  • Sophocleous M, Bardsley E, Healey J (2006) A rainfall loading response recorded at 300 meters depth: implications for geological weighing lysimeters. J Hydrol 319: 237-244. doi:10.1016/j.jhydrol.2005.06.031

  • Steckler MS, Nooner SL, Akhter SH, Chowdhury SK, Bettadpur S, Seeber L, Kogan MG (2010) Modeling Earth deformation from monsoonal flooding in Bangladesh using hydrographic, GPS, and Gravity Recovery and Climate Experiment (GRACE) data. J Geophys Res 115, B08407. doi:10.1029/2009jb007018

    Google Scholar 

  • Stollenwerk KG, Breit GN, Welch AH, Yount JC, Whitney JW, Foster AL, Uddin MN, Majumder RK, Ahmed N (2007) Arsenic attenuation by oxidized aquifer sediments in Bangladesh. Sci Total Environ 379:133–150. doi:10.1016/j.scitotenv.2006.11.029

    Article  Google Scholar 

  • Sultana MS, Islam GT, Islam Z (2009) Pre- and post-urban wetland area in Dhaka City, Bangladesh: a remote sensing and GIS analysis. J Water Res Prot 1:414–421. doi:10.4236/jwarp.2009.16050

    Article  Google Scholar 

  • van Geen A, Zheng Y, Versteeg R, Stute M, Horneman A, Dhar R, Steckler M, Gelman A, Small C, Ahsan H, Graziano J, Hussein I, Ahmed KM (2003) Spatial variability of arsenic in 6000 tube wells in a 25 km2 area of Bangladesh. J Water Resour Res 39:1140–1155. doi:10.1029/2002WR001617

    Google Scholar 

  • van Wonderen JJ (2003) The use of groundwater models for resource assessment in Bangladesh. In: Rahman AA, Ravenscroft P (eds) Groundwater resources and development in Bangladesh: background to the arsenic crisis, agricultural potential and the environment. The University Press, Dhaka, pp 115–139

  • Vengosh A, Pankratov I (1998) Chloride/bromide and chloride/fluoride ratios of domestic sewage effluents and associated contaminated ground water. Ground Water 36:815–824. doi:10.1111/j.1745-6584.1998.tb02200.x

    Article  Google Scholar 

  • Welsh JL (1977) Report on Dhaka groundwater supply, Bangladesh. Dhaka Water Supply and Sewerage Authority, Dhaka

  • Zahid A, Balke KD, Hassan MQ, Flegr M (2006) Evaluation of aquifer environment under Hazaribagh leather processing zone of Dhaka city. Environ Geol 50:495–504. doi:10.1007/s00254-006-0225-1

    Article  Google Scholar 

Download references

Acknowledgements

The research was funded by a NERC grant NEG016879/1 to JMcA and PKS. The authors thank Dhiman Mondal for allowing to use lithological data-entry software, and the Bangladesh Water Development Board, the Department of Public Health Engineering, and Dhaka Water and Sewerage Authority, for the provision of data. Jun Jian is thanked for supplying the seasonal flow data for the Brahmaputra River, and R. K. Majumder for stable isotope data. The authors thank Peter Ravenscroft for an informal review, and M. Schneider and an anonymous reviewer for constructive and helpful reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Hoque.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 821 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoque, M.A., McArthur, J.M., Sikdar, P.K. et al. Tracing recharge to aquifers beneath an Asian megacity with Cl/Br and stable isotopes: the example of Dhaka, Bangladesh. Hydrogeol J 22, 1549–1560 (2014). https://doi.org/10.1007/s10040-014-1155-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-014-1155-8

Keywords