Skip to main content
Log in

The influence of irrigation and Wuliangsuhai Lake on groundwater quality in eastern Hetao Basin, Inner Mongolia, China

Influence de l’irrigation et du lac Wuliangsuhai sur la qualité des eaux souterraines dans la partie est du bassin de Hetao, Mongolie intérieure (Chine)

La influencia de la irrigación y del Lago Wuliangsuhai en la calidad del agua subterránea en el este de la cuenca Hetao, Mongolia Interior, China

灌溉水和乌梁素海湖水对中国内蒙古河套灌区东部地下水的影响演化研究

A influência da rega e do Lago Wuliangsuhai na qualidade das águas subterrâneas da parte oriental da Bacia Hetao, Mongólia Interior, China

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Geochemical and isotopic characterization of groundwater and lake-water samples were combined with water and total dissolved solids balances to evaluate sources of groundwater quality deterioration in eastern Hetao Basin, Inner Mongolia, China. Groundwater quality is poor; 11 of 13 wells exceed drinking-water guidelines for at least one health-based parameter and all wells exceed aesthetic guidelines. The well water is largely derived from Yellow River irrigation water. Notably high uranium concentrations in the Yellow River, relative to world rivers, suggest groundwater uranium and other trace elements may originate in the river-derived irrigation water. Complex hydrostratigraphy and spatial variation in groundwater recharge result in spatially complex groundwater flow and geochemistry. Evapotranspiration of irrigation water causes chloride concentration increases of up to two orders of magnitude in the basin, notably in shallow groundwater around Wuliangsuhai Lake. In addition to evapotranspiration, groundwater quality is affected by mineral precipitation and dissolution, silicate weathering, and redox processes. The lake-water and TDS balances suggest that a small amount of discharge to groundwater (but associated with very high solute concentrations) contributes to groundwater salinization in this region. Increasing salinity in the groundwater and Wuliangsuhai Lake will continue to deteriorate water quality unless irrigation management practices improve.

Résumé

La caractérisation géochimique et isotopique d’échantillons d’eau souterraine et d’eau du lac est combinée avec l’analyse des équilibres ioniques de l’eau et des éléments dissous (TDS) dans le but d’évaluer les origines de la détérioration de la qualité de l’eau souterraine dans la partie est du bassin de Hetao en Mongolie intérieure (Chine). La qualité d'eaux souterraines est pauvre; 11 puits sur 13 dépassent les directives sur l’eau potable pour au moins un paramètre relatif à la santé publique et tous les ouvrages dépassent les recommandations sur les paramètres esthétiques de l’eau. L’eau des puits provient pour une grande part de l’eau d’irrigation à partir de la Rivière Jaune. En particulier les concentrations en uranium élevées dans le fleuve jaune, par rapport aux autres fleuves du monde, suggèrent que l'uranium des eaux souterraines et d'autres éléments traces puissent provenir des eaux du fleuve dérivé pour l’irrigation. L’hydrostratigraphie complexe et les variations spatiales de la recharge des eaux souterraines ont pour conséquence un écoulement et une géochimie complexes dans l'espace. L’évapotranspiration de l'eau d'irrigation entraine une augmentation des concentrations en chlorures jusqu'à deux ordres de grandeur dans le bassin, notamment dans les eaux souterraines peu profondes autour du lac Wuliangsuhai. En plus de l'évapotranspiration, la qualité des eaux souterraines est affectée par la précipitation et la dissolution des minéraux, l’altération des silicates, et les processus redox. L’eau du lac et la balance des TDS suggèrent une légère alimentation des eaux souterraines (associée à des concentrations très élevées en solutés) qui contribue à la salinisation des eaux souterraines dans cette région. La salinité croissante dans les eaux souterraines et le lac Wuliangsuhai continuera à détériorer la qualité de l'eau à moins que les procédures de gestion d'irrigation ne s'améliorent.

Resumen

Se combinaron la caracterización geoquímica e isotópica de muestras de agua subterránea y de agua del lago con balances de agua y de sólidos totales disueltos para evaluar las fuentes del deterioro de la calidad del agua subterránea en el este de la cuenca Hetao, Mongolia Interior, China. La calidad del agua subterránea es pobre; 11 de 13 pozos excedieron los niveles guías de agua potable para por lo menos un parámetro base de la salud y todos los pozos excedieron los niveles guías estéticos. El agua de pozo proviene mayoritariamente de agua de irrigación del Río Amarillo. Concentraciones notablemente altas de uranio en el Río Amarillo, en relación con los ríos del mundo, sugieren que el uranio del agua subterránea y otros elementos trazas pueden originarse en el agua de irrigación derivada del río. La hidroestratigrafía compleja y la variación espacial en la recarga de agua subterránea resultan en un flujo y geoquímica del agua subterránea espacialmente complejo. La evapotranspiración de agua de riego causa incremento en la concentración de cloruro de hasta dos órdenes de magnitud en la cuenca, notablemente en el agua subterránea somera alrededor del lago Wuliangsuhai. Además de la evapotranspiración, la calidad del agua subterránea está afectada por la precipitación y disolución mineral, meteorización de silicatos y procesos redox. Los balances de agua del lago y TDS sugieren que una pequeña cantidad de la descarga de agua subterránea (pero asociada con una muy alta concentración de soluto) contribuye a la salinización del agua subterránea en esta región. El incremento de la salinidad en el agua subterránea y en el lago Wuliangsuhai continuarán deteriorando la calidad del agua a menos que se mejoren las prácticas de manejo de la irrigación.

摘要

根据湖水和地下水的同位素和地质化学特性,并结合水平衡模拟及总溶解性固体(TDS)平衡模拟,对中国内蒙古河套灌区东部的地下水质量恶化进行了演化分析。结果表明,河套灌区东部地下水质量较差,在取样的13口饮水井中,一种或多种健康质量标准超标的水井达11口。浅层地下水井的水源主要来自黄河灌溉水。相比于世界其他大河,黄河水铀浓度明显较高,这可能是水源为黄河灌溉水的地下水铀超标的主要原因。河套灌区东部复杂的水文地质特征,再加上地下水以及地表水空间分布的多变性导致了本区域较为复杂的地下水流动和水文特性。研究区灌溉水极强的蒸散发作用,导致氯浓度上升了两个数量级,尤其是乌梁素海周围的浅层地下水受蒸散发影响最大。除蒸散发影响以外,矿物质的溶解和析出,岩石的风化以及氧化还原过程都是地下水质量的重要影响因素。水平衡模拟以及TDS平衡模拟结果显示,仅有少量的乌梁素海湖水入侵地下水,但由于各类溶解物浓度较高,导致对地下水的质量影响较大。研究结果表明,河套灌区的灌溉方法如果得不到科学的改善,河套东部的地下水和乌梁素海湖水将会持续恶化。

Resumo

A caraterização geoquímica e isotópica de amostras de águas subterrâneas e de água do lago foi cruzada com informação do balanço hídrico e de sólidos dissolvidos totais (SDT), de forma a avaliar as origens da deterioração da qualidade da água subterrânea na parte oriental da Bacia Hetao, Mongólia Interior, China. A qualidade das águas subterrâneas é pobre; 11 em 13 furos excedem as diretrizes relativas à água potável pelo menos num parâmetro, e todos os poços ultrapassam as diretrizes asséticas. A água dos furos provém em grande parte dos excedentes de rega do rio Amarelo. As concentrações de urânio, notoriamente elevadas no rio Amarelo relativamente às de outros rios do mundo, sugerem que o urânio das águas subterrâneas, bem como outros elementos traço, possam ter origem na água de rega proveniente do rio. A hidroestratigrafia complexa e a variação espacial da recarga de águas subterrâneas resultam num complexo padrão de escoamento e de caraterísticas geoquímicas das águas subterrâneas. A evapotranspiração da água de rega provoca um aumento da concentração de cloreto de até duas ordens de magnitude na bacia, principalmente nas águas subterrâneas pouco profundas em torno do Lago Wuliangsuhai. Além da evapotranspiração, a qualidade das águas subterrâneas é afetada pela precipitação e dissolução de minerais, degradação de silicatos e por processos redox. Os balanços hídricos e de SDT sugerem que uma pequena quantidade de recarga para as águas subterrâneas (mas associada a concentrações muito elevadas de solutos) contribui para a salinização das águas subterrâneas nesta região. O aumento da salinidade nas águas subterrâneas e no Lago Wuliangsuhai vai continuar a deteriorar a qualidade da água, a menos que haja uma melhoria na gestão dos processos de rega em uso.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abhijit M, Prosun B, Fei S et al (2009) Chemical evolution in the high arsenic groundwater of the Huhhot basin (Inner Mongolia, PR China) and its difference from the western Bengal basin (India). Appl Geochem 24:1835–1851

    Article  Google Scholar 

  • Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution. Taylor and Francis, London

    Book  Google Scholar 

  • Baxter C, Hauer FR (2003) Measuring groundwater–stream water exchange: new techniques for installing minipiezometers and estimating hydraulic conductivity. Trans Am Fish Soc 132:493–502

    Article  Google Scholar 

  • Buck BJ, Wolff K, Merkler DJ et al (2006) Salt mineralogy of Las Vegas Wash, Nevada: morphology and subsurface evaporation. Soil Sci Soc Am J 70(5):1639–1651

    Article  Google Scholar 

  • Cartwright I, Weaver TR, Fifield LK (2006) Cl/Br ratios and environmental isotopes as indicators of recharge variability and groundwater flow: an example from the southeast Murray Basin, Australia. Chem Geol 231:38–56

    Article  Google Scholar 

  • Chabaux F, Riotte J, Clauer N et al (2001) Isotopic tracing of the dissolved U fluxes of Himalayan Rivers: implications for present and past U budgets of the Ganges–Brahmaputra system. Geochim Cosmochim Acta 65(19):3201–3217

    Article  Google Scholar 

  • Chapra SC (2008) Surface water-quality modeling. Waveland, Long Grove, IL

  • Chen JY, Tang CY, Sakura Y (2005) Nitrate pollution from agriculture in different hydrogeological zones of the regional groundwater flow system in the North China Plain. Hydrogeol J 13:481–492

    Article  Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, New York

    Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703

    Article  Google Scholar 

  • Deng YM, Wang YX, Ma T (2009) Isotope and minor element geochemistry of high arsenic groundwater from Hangjinhouqi, the Hetao Plain, Inner Mongolia. Appl Geochem 24:587–599

    Article  Google Scholar 

  • Ding TP, Gao JF, Tian SH et al (2011) Silicon isotopic composition of dissolved silicon and suspended particulate matter in the Yellow River, China, with implications for the global silicon cycle. Geochim Cosmochim Acta 75:6672–6689

    Article  Google Scholar 

  • Faye S, Maloszewski P, Stichler W et al (2005) Groundwater salinization in the Saloum (Senegal) delta aquifer: minor elements and isotopic indicators. Sci Total Environ 343:243–259

    Article  Google Scholar 

  • Fejes J, Ratnaweera H, li YW et al (2008) Lake Wuliangsuhai Restoration project. Final report, Norsk Institutt for Vannforskning, Oslo, Norway

  • Foster S, Garduno H, Evans R et al (2004) Quaternary Aquifer of the North China Plain: assessing and achieving groundwater resource sustainability. Hydrogeol J 12:81–93

    Article  Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Fu GB (1998) Hydrology of Yellow River drainage area. In: Tang QC, Xiong Y (eds) Hydrology of Chinese rivers (in Chinese). Science Press, Beijing

    Google Scholar 

  • Gaillardet J, Dupre B, Louvat P et al (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159:3–30

    Article  Google Scholar 

  • Gao JF, Ding TP, Luo XR et al (2011) δD and δ18O variations of water in the Yellow River and its environmental significance (In Chinese with English abstract). Acta Geograph Sin 85(4):596–602

    Google Scholar 

  • Gaudemer Y, Tapponnier P, Meyer B et al (1995) partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the ‘Tianzhu gap’, on the western Haiyuan Fault, Gansu (China). Geophys J Int 120:599–645

    Article  Google Scholar 

  • Guo XJ, Fu JY, Kaneko S et al (2001) Arsenic contamination of groundwater and prevalence of arsenical dermatosis in the Hetao Plain area, Inner Mongolia. Mol Cell Biochem 222:137–140

    Article  Google Scholar 

  • Guo HM, Yang SZ, Tang XH et al (2008) Groundwater geochemistry and its implications for arsenic mobilization in shallow aquifers of the Hetao Basin, Inner Mongolia. Sci Total Environ 393:131–144

    Article  Google Scholar 

  • Guo HM, Zhang B, Wang GC et al (2010) Geochemical controls on arsenic and rare earth elements approximately along a groundwater flow path in the shallow aquifer of the Hetao Basin, Inner Mongolia. Chem Geol 270:117–125

    Article  Google Scholar 

  • Guo HM, Zhang Y, Xing LN et al (2012) Spatial variation in arsenic and fluoride concentrations of shallow groundwater from the town of Shahai in the Hetao basin, Inner Mongolia. Appl Geochem 27:2187–2196

    Article  Google Scholar 

  • Heagle D, Hayashi M, Kamp G (2013) Surface–subsurface salinity distribution and exchange in a closed-basin prairie wetland. J Hydrol 478:1–14

    Article  Google Scholar 

  • Huang WW, Martin JM, Seyler P et al (1988) Distribution and behaviour of arsenic in the Huang He (Yellow River) estuary and Bohai Sea. Mar Chem 25:75–91

    Google Scholar 

  • Huang WW, Zhang J, Zhou ZH (1992) Particulate element inventory of the Huanghe (Yellow River): a large, high turbidity river. Geochim Cosmochim Acta 56:3669–3680

    Article  Google Scholar 

  • Humphries MS, Kindness A, Ellery WN et al (2011) Vegetation influences on groundwater salinity and chemical heterogeneity in a freshwater, recharge floodplain wetland, South Africa. J Hydrol 41:130–139

    Article  Google Scholar 

  • IWC-IM (1999) Construction and rehabilitation planning project for water-saving in Hetao Irrigation District of the Yellow River basin, Inner Mongolia (in Chinese). Institute of Water Conservancy and Hydropower of Inner Mongolia, Hohhot, China

    Google Scholar 

  • Jiang ZF (2011) Analysis of ecological water requirement and ecosystem health assessment for Lake Wuliangsuhai (in Chinese with English abstract). PhD Thesis, Inner Mongolia Agricultural University, Hohhot, China

  • Jiang XY, Yu ZG, Ku TL et al (2009) Distribution of uranium isotopes in the main channel of Yellow River (Huanghe), China. Cont Shelf Res 29:719–727

    Article  Google Scholar 

  • Korfali SI, Davies BE (2004) Speciation of metals in sediment and water in a river underlain by limestone: role of carbonate species for purification capacity of rivers. Adv Environ Res 8(3–4):599–612

    Article  Google Scholar 

  • Lanning FC, Eleuterius LN (1985) Silica and ash in tissues of some plants growing in the coastal area of Mississippi, USA. Ann Bot Lond 56:157–172

    Google Scholar 

  • Li CY, Liu TX, Gao RZ (2004) Study and synthetic assessment for the season-year change of the eutrophication main-control factors in Wuliangsuhai Lake (in Chinese with English abstract). Hydrology 24(3):14–17

    Google Scholar 

  • Lindblom E (2003) Pollution point sources in Lake Wuliangsuhai’s catchment area, P. R. of China. MSc Thesis, Uppsala University, Sweden

  • Liu GD, Wu WL, Zhang J (2005) Regional differentiation of non-point source pollution of agriculture-derived nitrate nitrogen in groundwater in northern China. Agric Ecosyst Environ 107:211–220

    Article  Google Scholar 

  • Luo T, Hu S, Cui JL et al (2012) Comparison of arsenic geochemical evolution in the Datong Basin (Shanxi) and Hetao Basin (Inner Mongolia), China. Appl Geochem 27:2315–2323

    Article  Google Scholar 

  • Milliman JD, Meade RH (1983) World-wide delivery of river sediments to the oceans. J Geol 9(1):1–21

    Article  Google Scholar 

  • Ministry of Health of China (2006) Guidelines for drinking-water quality of China. GB5749–2006

  • Palmer MR, Edmond JM (1993) Uranium in river water. Geochim Cosmochim Acta 57:4947–4955

    Article  Google Scholar 

  • Qin JH (2007) Web site of Hetao Irrigation Department. http://www.htgq.gov.cn/news/show.asp?id=599. Accessed 15 Oct 2001

  • Qu ZY, Chen YX, Shi HB et al (2003) Regional groundwater depth forecast by BP model of post-water-saving reconstruction in the Hetao Irrigation District of Inner Mongolia (in Chinese with English Abstract). Trans CSAE 19(1):59–62

    Google Scholar 

  • Salama RB (1985) Buried troughs, grabens and rifts in Sudan. J Afr Earth Sci 3(3):381–390

    Google Scholar 

  • Sheng Q, Shen SH, Gu Z (2007) Conversion coefficient between small evaporation pan and theoretically calculated water surface evaporation in China. J Nanjing Inst Meteorol 30(4):561–565

    Google Scholar 

  • Silliman BR, Bertness MD (2004) Shoreline development drives invasion of Phragmites australis and the loss of plant diversity on New England salt marshes. Conserv Biol 18(5):1424–1434

    Article  Google Scholar 

  • Solano ML, Soriano P, Ciria MP (2004) Constructed wetlands as a sustainable solution for wastewater treatment in small villages. Biosyst Eng 87(1):109–118

    Article  Google Scholar 

  • Sun B, Li CY, Zhang S et al (2009) The analysis of oversaturated oxygen in main irrigation drain of Hetao Basin (in Chinese with English abstract). Environ Chem 28(3):449–450

    Google Scholar 

  • Sun B, Li CY, Zhu DN (2011) Changes of Wuliangsuhai Lake in past 150 years based on 3S technology. Proceedings of 2011 International Conference on RSETE, Nanjing, China, June 2011, pp 2993–2997

  • Wang Y, Ren M, Zhu DK (1986) Sediment supply to the continental shelf by the major rivers of China. J Geol Soc 143:935–941

    Article  Google Scholar 

  • Wang LP, Chen YX, Zeng GF (1993) Irrigation, drainage and salinization control in Hetao Irrigation District of Inner Mongolia (in Chinese). Water Resources and Hydraulic Power Publisher, Beijing, 250 pp

    Google Scholar 

  • World Health Organization (2011) Guidelines for drinking-water quality, fourth edition. http://www.who.int/water_sanitation_health/publications/2011/dwq_guidelines/en/

  • Xu X, Huang GH, Qu ZY et al (2010) Assessing the groundwater dynamics and impacts of water saving in the Hetao Irrigation District, Yellow River basin. Agric Water Manag 98:301–313

    Article  Google Scholar 

  • Yang ZY (2009) The purification abilities of emergent plants (Phragmites) for eutrophic elements in Lake Wuliangsuhai (in Chinese with English abstract). MSc Thesis, Inner Mongolia Agricultural University, Hohhot, China

  • Yu RH (2000) Evaluation of Water Environment and Study of Remote Sensing Translating Analysis In Wuliangsuhai Lake (in Chinese with English abstract). MSc Thesis, Inner Mongolia Agricultural University, Hohhot

  • Zhang J, Huang WW, Liu MG et al (1990) Element concentration and partitioning of loess in the Huanghe (Yellow River) drainage basin, North China. Chem Geol 89:189–199

    Article  Google Scholar 

  • Zhang J, Huang WW, Létolle R et al (1995) Major element chemistry of the Huanghe (Yellow River), China: weathering processes and chemical fluxes. J Hydrol 168:173–203

    Article  Google Scholar 

  • Zhao LQ, Cui SX, Zhang LX et al (2004) The survival mechanism of dune reed (Phragmites communis) cultures under high sodium chloride concentration. Plant Cell Tissue Org 79:291–298

    Article  Google Scholar 

  • Zhao YH, Deng XZ, Qi L et al (2010) Regional rural development, nitrogen input and output in farming-grazing system and its environmental impacts: a case study of the Wuliangsuhai Catchment. Procedia Environ Sci 2:542–556

    Article  Google Scholar 

  • Zhu DN, Li CY, Sun B et al (2010) The application of new fuzzy matter-element model in evaluation of lake water quality (in Chinese with English abstract). Yellow River 32(12):127–129

    Google Scholar 

Download references

Acknowledgements

The authors thank Zhao Shengnan, Zhang Wenying, Pan Runhou and the Inner Mongolia Agricultural University lake research team for sampling assistance, and Farzin Malekani for laboratory assistance. Helpful comments from Emilio Custodio, one anonymous reviewer, and in particular editor Vincent Post, were much appreciated. Support from the Chinese National Natural Science Foundation (Nos. 51339002, 51269016, 51269017, 41263010, 51169017, 51169011, 51069007), China Scholarship Council (No. 2011815020), Natural Science Foundation of Inner Mongolia (Nos. 2012MS0612, 20091408, 20080105), international cooperation collaboration projects (2011DFA90710), Chinese Ministry of Water Resources (201101021, 201001039), and the Geological Survey of Canada are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cathryn Ryan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 212 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, D., Ryan, M.C., Sun, B. et al. The influence of irrigation and Wuliangsuhai Lake on groundwater quality in eastern Hetao Basin, Inner Mongolia, China. Hydrogeol J 22, 1101–1114 (2014). https://doi.org/10.1007/s10040-014-1116-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-014-1116-2

Keywords

Navigation