Skip to main content
Log in

Flow and transport model of a polder area in the Belgian coastal plain: example of data integration

Modèle de flux et d’écoulement dans un polder de la plaine côtière belge: exemple d’intégration de données

Modelo de flujo y transporte de un área de polder en la planicie costera de Bélgica: ejemplo de la integración de datos

基于数据整合的比利时滨海平原圩田地区地下水流动运移模型

Modelo de fluxo e transporte de uma área de polder na planície costeira belga: exemplo de integração de dados

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Tracer data can serve to derive parameters related to groundwater systems or can be used in the calibration of transport and flow models. Temperature, 3H/3He (age dating) and hydrochemical data, together with head measurements, borehole logs and an aquifer test, were used to obtain insight into the flow and transport of a Quaternary aquifer system located in the Belgian polder area. Flow and transport model code SEAWAT acted as the integration medium for the different data. Each type of data has its own interpretation technique and adds components to the model. Additionally, different types of data aid in verification of the results. For instance, fluxes from temperature logs (used with the SEAWAT model), and water quality and age dating all provide information on flow to and velocities in the vicinity of drainage ditches. Different data also provide information on different scales. Temperature logs and aquifer tests act on a small scale, groundwater age is influenced by larger-scale flow, and water quality is determined by the general flow of the area. Integration of different kinds of geological, hydrological, geophysical and geochemical data is shown to be an important way forward in the efforts to model real-world cases.

Résumé

Les données de traçage peuvent servir à relier les paramètres de systèmes aquifères ou être utilisées pour calibrer des modèles de flux et de déplacement d’eau. Température, 3H/3He (datation) et données hydrochimiques, mesures simultanées de hauteur de charge, logs de forage et un essai de nappe ont été utilisés pour obtenir un aperçu sur le flux et l’écoulement de nappe d’un système aquifère quaternaire localisé dans la région des polders belges. Le modèle de flux et d’écoulement code SEAWAT a joué le rôle d’intégrateur des différentes données. Chaque type de donnée a ses propres techniques d’interprétation et ajoute des paramètres au modèle. De plus, différents types de données contribuent à la vérification des résultats. Par exemple, les flux tirés des logs de température (utilisés avec le modèle SEAWAT), la qualité de l’eau et sa datation fournissent chacun des informations sur le flux et les vitesses au voisinage des fossés de drainage. Les différentes données fournissent aussi une information à différentes échelles. Les logs de température et essais de nappe marquent sur une petite échelle, l’âge de la nappe dépend du flux à plus grande échelle, et la qualité de l’eau est déterminée par le flux global dans la zone. On montre que l’intégration de différentes données géologiques, géophysiques et géochimiques est une avancée importante dans l’effort de modélisation de cas réels.

Resumen

Los datos de trazadores pueden servir para deducir los parámetros relacionados a los sistemas de agua subterránea o pueden ser usados en la calibración de los modelos de flujo y transporte. Se utilizaron los datos de temperatura, 3H/3He (datación de edad) e hidroquímica, conjuntamente con las mediciones de carga, registros de perforaciones y un ensayo de acuífero, para comprender el flujo y transporte de un sistema acuífero Cuaternario localizado en el área del polder en Bélgica. El código del modelo de flujo y transporte SEAWAT actuó como un medio de integración para los diferentes datos. Cada tipo de datos tiene su propia técnica de interpretación y suma componentes al modelo. Adicionalmente distintos tipos de datos ayudan en la verificación de los resultados. Por ejemplo, los flujos de registros de temperatura (usados con el modelo SEAWAT), y la calidad y datación de la edad del agua proporcionan información sobre el sentido de flujo y las velocidades en la vecindad de las zanjas de drenaje. Los diferentes datos también proporcionan información sobre distintas escalas. Los registros de temperaturas y los ensayos de acuíferos actúan sobre una pequeña escala, la edad del agua subterránea está influenciada por flujos a gran escala, y la calidad del agua está determinada por el flujo general del área. La integración de diferentes clases de datos geológicos, hidrológicos, geofísicos y geoquímicos demuestra un importante camino en los esfuerzos para modelar los casos de la realidad.

摘要

通过示踪数据可获取地下水系统的相关参数,可校正运移流动模型。综合利用温度、氚氦法(定年方法)、水化学数据、水头测量、测井记录以及含水层试验等数据可获取比利时圩田地区某第四纪含水层中地下水流动运移模型的相关信息。本次研究中利用的是流动运移软件SEAWAT,它是用于不同数据整合的平台。首先利用不同的解译方法对各种类型的数据解译,而后为模型提供相应的模块。此外,不同类型数据均可对结果进行验证。例如,测温曲线(和SEAWAT模型联用)得出的流量、水质和年龄数据都提供排泄渠附近水流的流速信息。不同的数据能提供不同尺度上的信息。测温曲线和含水层试验一般是小尺度上的,而地下水年龄一般受大尺度水流所影响,水质则由区域地下水流场确定。不同类型的地质、水文地质、地球物理以及地球化学数据的综合利用对实际条件的模拟有一定成效。

Resumo

Dados de traçadores podem servir para derivar parâmetros relacionados com sistemas de águas subterrâneas ou podem ser usados para a calibração de modelos de transporte e de fluxo. Dados de temperatura, 3H/3He (datação) e hidroquímicos, em conjunto com medições de níveis piezométricos, perfis de sondagem e ensaios de caudal, foram usados para obter uma visão do fluxo e transporte num sistema aquífero quaternário localizado numa área de polder [porção de terrenos baixos e planos que constituem uma entidade hidrológica artificial, incluída entre aterros (diques), utilizados para a agricultura ou habitação], na Bélgica. O código de modelo de fluxo e transporte SEAWAT age como o meio integrador para os diferentes dados. Cada tipo de dados tem a sua própria interpretação técnica e adiciona componentes ao modelo. Adicionalmente, diferentes tipos de dados ajudam na verificação dos resultados. Por exemplo, fluxos a partir de perfis de temperatura (usados com o modelo SEAWAT) e dados de qualidade e datação providenciam informação sobre o fluxo para e nas imediações das valas de drenagem. Dados distintos providenciam informações a diferentes escalas. Perfis de temperatura e ensaios de caudal actuam a pequena escala, datações de água subterrânea são influenciadas por fluxo de grande escala e a qualidade da água é determinada pelo fluxo geral da área. Mostra-se que a integração de diferentes tipos de dados geológicos, hidrológicos, geofísicos e geoquímicos é uma via importante em direcção aos esforços para modelar casos reais.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aeschbach-Hertig W, El-Gamal H, Wieser M, Palcsu L (2008) Modeling excess air and degassing in groundwater by equilibrium partitioning with a gas phase. Water Resour Res 44(8)

  • Amerijckx JB (1949) De historische Polders van Oostende [The Historical Polders of Oostende]. Natuurwetenschappelijk Tijdschrift 31:142–150

    Google Scholar 

  • Appelo CAJ, Postma D (2005) Geochemistry groundwater and pollution, 2nd edition. Balkema, Dordrecht, the Netherlands

  • Back W (1960) Origin of hydrochemical facies of ground water in the Atlantic Coastal plain. Rept. pt.1, 21st Int. Geol. Cong., Copenhagen 1960, pp 87–95

  • Bredehoeft J (2005) The conceptualization model problem-surprise. Hydrogeol J 13:37–46

    Article  Google Scholar 

  • De Breuck W, De Moor G (1974) The evolution of the coastal aquifer of Belgium. Proceedings of the 4th Salt Water Intrusion Meeting, Ghent, 1974, pp 158–172

  • De Breuck W, De Moor G, Tavernier R (1974) Depth of the fresh–salt water interface in the unconfined aquifer of the Belgian coastal area (1963–1973). Proc. 4th Salt Water Intrusion Meeting, Ghent, 1974, annex-map, scale 1/100000

  • Ervynck A, Baeteman C, Demiddele H, Hollevoet Y, Pieters M, Schelvis J, Tys D, Van Strydonck M, Verhaeghe F (1999) Human occupation because of a regression or the cause of a transgression: a critical review of the interaction between geological events and human occupation in the Belgian coastal plain during the first millennium AD. PdK 26:97–121

    Google Scholar 

  • Farasyn D (2006) De Historische Polders van Oostende, 1584–1810 [The Historical Polder of Oostend]. Oostendse historische publicaties 15, Stadsarchief Oostende, the Netherlands

  • Gardner P, Solomon DK (2009) An advanced passive diffusion sampler for the determination of dissolved gas concentrations. Water Resour Res 45:W06423. doi:10.1029/2008WR007399

    Article  Google Scholar 

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the U.S. Geological Survey modular ground-water model: user guide to modularization concepts and the ground-water process. US Geol Surv Open-File Rep 00–92

  • Heaton THE, Vogel JC (1981) Excess air in groundwater. J Hydrol 50(1–3):201–216

    Article  Google Scholar 

  • Hinsby K, Edmunds WM, Loosli HH, Manzano M, de Melo MT Condesso, Barbecot E (2001) The modern water interface: recognition, protection and development: advance of modern waters in European aquifer systems. In: Edmunds WM, Milne CJ (eds) Palaeowaters in coastal Europe: evolution of groundwater since the late Pleistocene. Geol Soc Lond Spec Publ 189:271–288

  • Konikow LF, Bredehoeft JD (1978) Computer model of two-dimensional solute transport and dispersion in ground water. US Geol Surv Tech Water Resour Invest, book 7, chap. C2, US Geological Survey, Reston, VA

  • Kruseman GP, de Ridder NA (1990) Analysis and evaluation of pumping test data, 2nd edn. ILRI Publ. 47, Wageningen, the Netherlands

  • Langevin CD, Thorne DT, Dausman AM, Sukop MC, Guo W (2007) SEAWAT Version 4: a computer program for simulation of multi-species solute and heat transport. US Geol Surv Tech Methods, book 6, chap. A22, US Geological Survey, Reston, VA

  • Lapham WW (1989) Use of temperature profiles beneath streams to determine rates of vertical ground-water flow and vertical hydraulic conductivity. US Geol Surv Water Suppl Pap 2337

  • Louwyck A, Vandenbohede A, Lebbe L (2010) Numerical analysis of step-drawdown tests: parameter identification and uncertainty. J Hydrol 380:165–179

    Article  Google Scholar 

  • Manning AH, Solomon DK, Thiros SA (2005) 3H/3He age data in assessing the susceptibility of wells to contamination. Ground Water 43(3):353–367

    Article  Google Scholar 

  • McNeill JD (1986) Geonics EM39 Borehole conductivity meter: theory of operation. Technical note TN-20, Geonics, Mississauga, ON

  • Newman BD, Osenbruck K, Eschbach-Hertig W, Solomon DK, Cook P, Rozanski K, Kipfer R (2010) Dating of ‘young’ groundwaters using environmental tracers: advantages, applications, and research needs. Isotopes Environ Health Stud 46(3):259–278

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geological Survey, Denver, CO

    Google Scholar 

  • Parsons ML (1970) Groundwater thermal regime in a glacial complex. Water Resour Res 6(6):1701–1720

    Article  Google Scholar 

  • Portniaguine O, Solomon DK (1998) Parameter estimation using groundwater age and head data, Cape Cod, Massachusetts. Water Resour Res 34(4):637–645

    Article  Google Scholar 

  • Post VEA (2005) Fresh and saline groundwater interaction in coastal aquifers: Is our technology ready for the problems ahead? Hydrogeol J 13:120–123

    Article  Google Scholar 

  • Prickett TA, Naymik TG, Lonnquist CG (1981) A “random walk” solute transport model for selected groundwater quality evaluations. Bulletin 65, Illinois State Water Survey, Champaign, IL

    Google Scholar 

  • Schlosser P, Stute M, Dorr H, Sonntag C, Munnich KO (1988) Tritium He-3 dating of shallow groundwater. Earth Planet Sci Lett 89(3–4):353–362

    Article  Google Scholar 

  • Solomon DK, Cook PG (2000) 3H and 3He. In: Cooj PG, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer, Boston, pp 397–424

    Google Scholar 

  • Solomon DK, Poreda RJ, Schiff SL, Cherry JA (1992) Tritium and Helium-3 as groundwater age tracers in the Borden aquifer. Water Resour Res 28(3):741–755

    Article  Google Scholar 

  • Stallman RW (1963) Computation of groundwater velocity from temperature data. US Geol Surv Water Suppl Pap 1544-H:36–46

    Google Scholar 

  • Stuyfzand PJ (1993a) Hydrochemistry and Hydrology of the Coastal Dune area of the Western Netherlands. PhD Thesis, Vrije Universiteit, the Netherlands

  • Stuyfzand PJ (1993b) Behaviour of major and trace constituents in fresh and salt water intrusion, in the western Netherlands. Proceedings 12th Salt Water Intrusion Meeting, Barcelona 1992, pp 143–160

  • Stuyfzand PJ (1999) Patterns in groundwater chemistry resulting from groundwater flow. Hydrogeol J 7(1):15–27

    Article  Google Scholar 

  • Stuyfzand PJ, Stuurman RJ (2006) Origin, distribution and chemical mass balances of non-anthropogenic, brackish and (hyper)saline groundwaters in the Netherlands. Proc. 1st SWIM-SWICA Joint Saltwater Intrusion Conference, Cagliari, Italy, 2006, pp 151–164

  • Suzuki S (1960) Percolation measurements based on heat flow through soil with special reference to paddy fields. J Geophys Res 65(9):2883–2885

    Article  Google Scholar 

  • Szabo Z, Rice DE, Plummer LN, Busenberg E, Drenkard S (1996) Age dating of shallow groundwater with chlorofluorocarbons, tritium, helium 3, and flow path analysis, southern New Jersey coastal plain. Water Resour Res 32(4):1023–1038

    Article  Google Scholar 

  • Troldborg L, Jensen KH, Engesgaard P, Refsgaard JC, Hinsby K (2008) Using environmental tracers in modeling flow in a complex shallow aquifer system. J Hydrol Eng 13(11):1037–1048

    Article  Google Scholar 

  • Van Meir N, Lebbe L (2003) Deriving TDS values in coarse sediments from long normal and electromagnetic logs. Ground Water 41(1):33–40

    Article  Google Scholar 

  • Vandenbohede A, Lebbe L (2002) Numerical modelling and hydrochemical characterisation of a fresh water lens in the Belgian coastal plain. Hydrogeol J 10(5):576–586

    Article  Google Scholar 

  • Vandenbohede A, Lebbe L (2003) Combined interpretation of pumping and tracer tests: theoretical considerations and illustration with a field test. J Hydrol 277(1–2):134–149

    Article  Google Scholar 

  • Vandenbohede A, Lebbe L (2010) Parameter estimation based on vertical heat transport in the surficial zone. Hydrogeol J 18:931–943

    Article  Google Scholar 

  • Vandenbohede A, Lebbe L, Gysens S, Delecluyse K, De Wolf P (2008a) Salt water infiltration in two artificial sea inlets in the Belgian dune area. J Hydrol 360:77–86

    Article  Google Scholar 

  • Vandenbohede A, Van Houtte E, Lebbe L (2008b) Groundwater flow in the vicinity of two artificial recharge ponds in the Belgian coastal dunes. Hydrogeol J 16:1669–1681

    Article  Google Scholar 

  • Vandenbohede A, Luyten K, Lebbe L (2008c) Impacts of global change on heterogeneous coastal aquifers: case study in Belgium. J Coast Res 24(2B):160–170

    Article  Google Scholar 

  • Vandenbohede A, Courtens C, Lebbe L, De Breuck W (2010) Fresh-salt water distribution in the central Belgian coastal plain: an update. Geol Belg 11(3):163–172

    Google Scholar 

  • Varni M, Carrera J (1998) Simulation of groundwater age distributions. Water Resour Res 34:3271–3281

    Article  Google Scholar 

  • Visser A, Broers HP, Bierkens MFP (2007) Dating degassed groundwater with H-3/He-3. Water Resour Res 43(10)

  • Visser A, Schaap JD, Broers HP, Bierkens MFP (2009) Degassing of H-3/He-3, CFCs and SF6 by denitrification: measurements and two-phase transport simulations. J Contam Hydrol 103(3–4):206–218

    Article  Google Scholar 

  • Zheng C, Wang PP (1999) MT3DMS, a modular three-dimensional multispecies model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems: documentation and User’s Guide. US Army Engineer Research and Development Center Contract Report SERDP-99-1. USAERDC, Vicksburg, MI

  • Zuber A, Rozanski K, Kania J, Purtschert R (2011) On some methodological problems in the use of environmental tracers to estimate hydrogeological parameters and to calibrate flow and transport models. Hydrogeol J 19(1):53–69

    Article  Google Scholar 

Download references

Acknowledgements

AVDB is supported by the Fund for Scientific Research–Flanders (Belgium) where he is currently a postdoctoral fellow. The authors acknowledge the Flemish Environment Agency and the Flemish Land Use Agency for allowing the use of their data. Part of the research was done in the framework of the CLIWAT project partly financed by the InterReg IVB North Sea Region, the European Regional Development Fund. We acknowledge Werner Aeschbach-Hertig for helping to evaluate the effect of degassing on groundwater age estimates by the 3H/3He method. Ward Sanford and two anonymous reviewers are acknowledged for their valuable comments. Finally, we would like to thank all the land owners—without their enthusiastic cooperation, the fieldwork would not have been possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Vandenbohede.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandenbohede, A., Hinsby, K., Courtens, C. et al. Flow and transport model of a polder area in the Belgian coastal plain: example of data integration. Hydrogeol J 19, 1599–1615 (2011). https://doi.org/10.1007/s10040-011-0781-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-011-0781-7

Keywords

Navigation