Skip to main content
Log in

Groundwater salt accessions to land in the Queensland Murray-Darling Basin, Australia

Apports salins par l’eau de nappe dans le bassin Murray-Darling, Queensland, Australie

Acceso de agua subterránea salada a la tierra en la Cuenca Queensland Murray-Darling, Australia

澳大利亚昆士兰墨累-达令盆地地下水盐分在土壤中的累积

Salinização de solos a partir de água subterrânea na Bacia de Murray-Darling, Queensland, Austrália

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Salt accessions from artesian and sub-artesian bores have been calculated for the Queensland Murray-Darling Basin (QMDB), Australia, using available water chemistry, licensing data and a number of assumptions. The majority (~90%) of the salt accessions come from sub-artesian bores used for irrigation (including intensive livestock) purposes. Historically, free-flowing artesian bores in the west of the basin have contributed large quantities of salt, but their contributions have declined with capping and piping of these bores. The highest salt yields (t/km2) are in the Condamine catchment, which also contains 70% of the bores in the region. Groundwater salt accessions are considerably less than atmospheric (rainfall) accessions in all catchments except the Condamine. Further expansion of the coal seam gas industry may substantially increase non-cyclic groundwater accessions, further reducing catchment salt export/import ratios.

Résumé

Les apports de sel par forages artésiens et artésiens non jaillissants ont été calculés pour le bassin Murray-Darling en Queensland (QMDB), Australie, en utilisant chimie de l’eau, données réglementaires et plusieurs hypothèses. La majorité (~90%) des apports de sel vient de forages artésiens non jaillissants utilisés pour l’irrigation (incluant cheptel vif). Historiquement, les forages jaillissants de l’Ouest du bassin ont apporté de grandes quantités de sel, mais leur apport a décliné avec leur fermeture et leur tubage. Les apports de sel les plus élevés (t/km2) sont sur le bassin versant de Condamine, qui présente aussi 70% des forages de la région. Les apports salins par l’eau de nappe sont considérablement inférieurs aux apports atmosphériques (précipitations) dans tous les bassins, sauf celui de Condamine. De nouveaux développements de l’industrie du gaz de houille peuvent sensiblement accroître les apports non-cycliques de nappe, réduisant d’avantage les ratios export/import de sel.

Resumen

Se ha calculado el acceso de sal de pozos artesianos y subartesianos en la Cuenca Queensland Murray-Darling (QMDB), Australia, usando la química del agua disponible, datos con licencia y una serie de supuestos. La mayoría (~90%) de los accesos de sal provienen de pozos subartesianos usados para propósitos de irrigación (incluida la ganadería intensiva). Históricamente, los pozos artesianos de flujo libre en el oeste de la cuenca han contribuido con grandes cantidades de sal, pero sus contribuciones han disminuido con el taponamiento y entubamiento de estos pozos. Las producciones más altas de sal (t/km2) están en la cuenca Condamine, la cual también contiene el 70% de los pozos de la región. Los accesos de agua subterránea salada son considerablemente menos que los accesos atmosféricos (precipitaciones) en todas las cuencas a excepción de la Condamine. Una expansión ulterior de la industria del gas de las vetas de carbón puede incrementar sustancialmente los accesos de agua subterránea no cíclicas, reduciendo ulteriormente los cocientes exportaciones / importaciones de sal en la cuenca.

摘要

利用现有水化学、许可申请资料和一些假设条件,作者计算了自流孔和次自流孔给澳大利亚昆士兰墨累-达令盆地(QMDB)造成的盐分累积。大部分盐(约90%)来自于用于灌溉(包括集约化畜牧)的次自流井。历史上,自由流动的自流孔向盆地西部贡献了大量盐分。而后期封孔和对自流孔的管道化处理,自流孔贡献的盐分也随之减少。康达明流域是产盐量最高的地区(t/km2),盆地内70%的井孔分布在该流域。除康达明流域外,地下水盐分累积量显著低于大气(降雨)带来的盐。 煤层气工业的进一步扩展可能导致不循环的地下水大幅度增加,进而减少流域内盐分输出/输入的比例。

Resumo

Foi estudada a salinização a partir de furos artesianos e sub-artesianos na Bacia de Murray-Darling, em Queensland (QMDB), na Austrália, usando análises químicas das águas disponíveis, dados de licenciamento e um determinado número de hipóteses assumidas. A maioria (~90%) da salinização provém de furos sub-artesianos usados para rega (incluindo criação intensiva de gado). Historicamente, os furos artesianos que fluíam livremente na parte oeste da bacia contribuíram com grandes quantidades de sais, mas as suas contribuições entraram em declínio com a colocação de protecções na cabeça dos furos e com o entubamento das suas águas. As maiores cargas salinas (t/km2) situam-se na bacia de Condamine, a qual contém também 70% dos furos da região. A salinização com origem em águas subterrâneas é consideravelmente inferior à atmosférica (precipitação) em todas as bacias hidrográficas, excepto a de Condamine. A futura expansão da indústria do gas natural em camada carbonífera pode aumentar substancialmente a carga salina não cíclica a partir de águas subterrâneas, reduzindo então a relação exportação/importação de sais na bacia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Banks EW, Simmons CT, Jolly ID, Doble RC, McEwan KL, Herczeg AL (2009) Interactions between a saline lagoon and a semi-confined aquifer on a salinized floodplain of the lower River Murray, southeastern Australia. Hydrol Process 23:3415–3427

    Article  Google Scholar 

  • Biggs AJW (2006) Rainfall salt accessions in the Queensland Murray-Darling Basin. Aust J Soil Res 44:637–645

    Article  Google Scholar 

  • Biggs AJW, Power RE, Silburn DM, Owens JS, Burton DWG, Hebbard CL (2005) Salinity Audit: Border Rivers and Moonie Catchments, Queensland Murray-Darling Basin. Publ. no. QNRM05462, Queensland Department of Natural Resources and Mines, Brisbane, Australia

  • Blackburn G, McLeod S (1983) Salinity of atmospheric precipitation in the Murray-Darling drainage division, Australia. Aust J Soil Res 21:411–434

    Article  Google Scholar 

  • Commonwealth of Australia (2007) Water Act 2007. http://www.environment.gov.au/water/australia/water-act/index.html. Cited 5 June 2010

  • Cresswell RG, Silburn DM, Biggs AJW, Dighton JC, Rassam D, McNeil VH (2006) Hydrogeochemistry of Hodgson Creek catchment, Queensland Murray-Darling Basin. 10th Murray-Darling Basin Groundwater Workshop. Murray-Darling Basin Commission, Canberra,Australia, 39 pp

    Google Scholar 

  • DEEDI (2009) Blueprint for Queensland’s LNG Industry. Department of Employment, Economic Development and Innovation, Brisbane, Queensland, Australia

    Google Scholar 

  • Department of Lands (1993) Mulga region: a study of the inter-dependence of the environment, pastoral production and the economy. Queensland Government, Department of Lands, Brisbane, Australia

    Google Scholar 

  • Dutta S, Silburn DM (2005) Streamflow modelling, groundwater balance and recharge estimates for Hodgson Creek, Condamine Catchment, Queensland. Publ. no. QNRM05514, Department of Natural Resources & Mines, Brisbane, Australia

    Google Scholar 

  • Fensham RJ, Fairfax RJ (2003) Spring wetlands of the Great Artesian Basin, Queensland, Australia. Wetl Ecol Manage 11(5):343–362

    Article  Google Scholar 

  • GABCC (1998) Great Artesian Basin Resource Study Summary, Great Artesian Basin Consultative Council, Manuka, Australia

  • Herczeg AL, Love AJ (2007) Review of recharge mechanisms for the Great Artesian Basin. CSIRO, Glen Osmond, SA, Australia

    Google Scholar 

  • Jolly ID, Williamson DR, Gilfedder M, Walker GR, Morton R, Robinson G, Jones H, Zhang L, Dowling TI, Dyce P, Nathan RJ, Nandakumar N, Clarke R, McNeill V (2001) Historical stream salinity trends and catchment salt balances in the Murray-Darling Basin, Australia. Mar Freshw Res 52(1):53–63

    Article  Google Scholar 

  • Keifert L (1997) Characteristics of wind transported dust in Eastern Australia. Thesis, Griffith University, Queensland, Australia

    Google Scholar 

  • Kuusela R, Raukola T, Lappalainen H, Piirainen A (1993) Methods and reasons for cutting use of salt in Finland. Transportation Research Board, Issue 1387, Snow removal and ice control technology. 3rd International Symposium on Snow Removal and Ice Technology, Minneapolis, MN, 14–18 September 1992

  • Power RE, Johansen C, McNeil VH (2005) Salinity baseline conditions: Queensland Murray-Darling Basin. Queensland Department of Natural Resources and Mines, Brisbane, Australia

  • Power RE, Biggs AJW, Burton DWG (2007) Warrego-Paroo Salinity Audit 2007. Publ. no. QNRMSALTS_1, Queensland Department of Natural Resources and Water, Brisbane, Australia

  • Queensland Government (2000) Water Act 2000. http://www.legislation.qld.gov.au/legisltn/current/w/watera00.pdf. Cited 5 May 2010

  • Salama RB, Bartle GA (1998) Comparative study of streamflow and salt load from selected catchments in the wheatbelt of Western Australia. 23/98, CSIRO, Clayton South, Australia

  • Schoups G, Hopmans JW, Young CA, Vrugt JA, Wallender WW, Tanji KK, Panday S (2005) Sustainability of irrigated agriculture in the San Joaquin Valley, California. Proc Natl Acad Sci USA 102:15352–15356

    Article  Google Scholar 

  • Silburn DM, Montgomery J (2004) Deep drainage under irrigated cotton in Australia: a review. In: WATERpak: a guide for irrigation management in cotton. Cotton Research and Development Corporation/Australian Cotton Cooperative Research Centre, Narrabri, Australia, pp 29–40

    Google Scholar 

  • Silburn DM, Owens JS (2005) Evaluation of the 2Csalt model for Hodgson Creek. Publ. no. QNRM05513, Queensland Department of Natural Resources and Mines, Brisbane, Australia

    Google Scholar 

  • Simpson HJ, Herczeg AL (1991) Salinity and evaporation in the River Murray Basin, Australia. J Hydrol 124(1–2):1–27

    Article  Google Scholar 

  • White I, McDonald BCT, Somerville PD, Wasson R (2009) Evaluation of salt sources and loads in the upland areas of the Murray-Darling Basin, Australia. Hydrol Proc 23(17):2485–2495

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges the advice of Tom Bean, Andrew Brier, Orren Farrington, David Free and Gerry Harth from the Department of Environment and Resource Management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. W. Biggs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biggs, A.J.W. Groundwater salt accessions to land in the Queensland Murray-Darling Basin, Australia. Hydrogeol J 19, 719–726 (2011). https://doi.org/10.1007/s10040-011-0714-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-011-0714-5

Keywords

Navigation